Signal Processing - May 2017 - 20

An Example CAPM Regression
Table S1 shows time-series regressions of excess stock portfolio
returns (in percent), R pt - rf, t , on the excess stock-market return,
R M, t - rf, t , from July 1963 to December 1991 (342 months)
for 25 portfolios using Center for Research in Security Prices
monthly return data of all U.S. market stocks. The 25 portfolios
are constructed by dividing firms using market caps (size) and
book-to-market (B/M) ratios into quintile buckets. The empirical
results are extracted from [23]. The t-values and s ( f ) are in
parentheses. The residual standard error s ( f ) is the root-meansquare error of the regression. As can be seen, only a few a
coefficients are statistically significant, i.e., t ( a ) 2 2. All of
the b coefficients are statistically significant.

2

3

Size

Low

2

Small

1.40

1.26

4

1.11

1.06

1.08

(26.33)

(28.12)

(27.01)

(25.03)

(23.01)

1.42

1.15

1.12

1.02

1.13

(26.33)

(28.12)

(27.01)

(25.03)

(23.01)

1.36

1.15

1.04

0.96

1.08

(26.33)

(28.12)

(27.01)

(25.03)

(23.01)

1.24

1.14

1.03

0.95

1.10

(26.33)

(28.12)

(27.01)

(25.03)

(23.01)

1.03

0.99

0.89

0.84

0.89

(28.12)

(27.01)

(25.03)

(23.01)

2
3

(26.33)

High

2
3
4
Big

4

High

Adjusted R2 and Residual Standard Error s (f)

a and t - value t (a)
Small

3

b and t-value t ( b)

Big

B/M Ratio
Low

B/M Ratio

4

Table S1. The time-series regressions from July 1963
through December 1991.
Size

Table S1. The time-series regressions from July 1963
through December 1991.

-0.22

0.15

0.30

0.42

0.54

(−0.90)

(0.73)

(1.54)

(2.19)

(2.53)

−0.18

0.17

0.36

0.39

0.53

(−1.00)

(1.05)

(2.35)

(2.79)

(3.01)

−0.16

0.15

0.23

0.39

0.50

(−1.12)

(1.25)

(1.82)

(3.20)

(3.19)

−0.05

−0.14

0.12

0.35

0.57

(−0.50)

(−1.50)

(1.20)

(2.91)

(3.71)

−0.04

−0.07

−0.07

0.20

0.21

(−0.49)

(−0.95)

(−0.70)

(1.89)

(1.41)

Small
2
3
4
Big

0.67

0.70

0.68

0.65

0.61

(−1.46)

(3.76)

(3.55)

(3.56)

(3.92)

0.79

0.79

0.76

0.76

0.71

(3.34)

(2.96)

(2.85)

(2.59)

(3.25)

0.84

0.84

0.80

0.79

0.74

(2.65)

(2.28)

(2.33)

(3.26)

(2.90)

0.89

0.90

0.87

0.80

0.76

(2.01)

(1.73)

(1.84)

(2.21)

(2.83)

0.89

0.91

0.54

0.79

0.69

(1.66)

(1.35)

(1.73)

(1.95)

(2.69)

FF Three-Factor Model and Cross-Sectional Returns
The FF three-factor model is an empirical asset-pricing
model featuring two cross-sectional return factors, the
small-minus-big (SMB) factor and the high-minus-low
(HML) factor:
E [R - rf ] = b M E [R M - rf ] + b s E [R SMB] + b h E [R HML] .
*	 The SMB factor is a firm size factor, represented by
the portfolio return of SMB (a portfolio of long
small-market-cap stocks and short big-cap stocks. Firm
size is measured by firm market capitalization (cap).
Small-size firms have excess returns in addition to the
market RP.

20

*	 The HML is a market-value factor, calculated by the portfolio return of HML (a portfolio of long high-value stocks
and short low-value stocks). Firm value is measured by
the B/M ratio or the price-to-earnings ratio. High B/M
ratios represent value stocks and low ratios growth
stocks. Value stocks have excess returns in addition to
the market RP.
Insight
SMB (or small-market cap) and HML (or value) portfolios
have significant nonzero alpha with respect to the CAPM,
i.e., excess returns in addition to the market RP. Note that
these two excess returns are predicted by the cross-sectional
factors determined by firm accounting features. Crosssectional means across various stocks/portfolios (sections).

IEEE Signal Processing Magazine

|

May 2017

|



Table of Contents for the Digital Edition of Signal Processing - May 2017

Signal Processing - May 2017 - Cover1
Signal Processing - May 2017 - Cover2
Signal Processing - May 2017 - 1
Signal Processing - May 2017 - 2
Signal Processing - May 2017 - 3
Signal Processing - May 2017 - 4
Signal Processing - May 2017 - 5
Signal Processing - May 2017 - 6
Signal Processing - May 2017 - 7
Signal Processing - May 2017 - 8
Signal Processing - May 2017 - 9
Signal Processing - May 2017 - 10
Signal Processing - May 2017 - 11
Signal Processing - May 2017 - 12
Signal Processing - May 2017 - 13
Signal Processing - May 2017 - 14
Signal Processing - May 2017 - 15
Signal Processing - May 2017 - 16
Signal Processing - May 2017 - 17
Signal Processing - May 2017 - 18
Signal Processing - May 2017 - 19
Signal Processing - May 2017 - 20
Signal Processing - May 2017 - 21
Signal Processing - May 2017 - 22
Signal Processing - May 2017 - 23
Signal Processing - May 2017 - 24
Signal Processing - May 2017 - 25
Signal Processing - May 2017 - 26
Signal Processing - May 2017 - 27
Signal Processing - May 2017 - 28
Signal Processing - May 2017 - 29
Signal Processing - May 2017 - 30
Signal Processing - May 2017 - 31
Signal Processing - May 2017 - 32
Signal Processing - May 2017 - 33
Signal Processing - May 2017 - 34
Signal Processing - May 2017 - 35
Signal Processing - May 2017 - 36
Signal Processing - May 2017 - 37
Signal Processing - May 2017 - 38
Signal Processing - May 2017 - 39
Signal Processing - May 2017 - 40
Signal Processing - May 2017 - 41
Signal Processing - May 2017 - 42
Signal Processing - May 2017 - 43
Signal Processing - May 2017 - 44
Signal Processing - May 2017 - 45
Signal Processing - May 2017 - 46
Signal Processing - May 2017 - 47
Signal Processing - May 2017 - 48
Signal Processing - May 2017 - 49
Signal Processing - May 2017 - 50
Signal Processing - May 2017 - 51
Signal Processing - May 2017 - 52
Signal Processing - May 2017 - 53
Signal Processing - May 2017 - 54
Signal Processing - May 2017 - 55
Signal Processing - May 2017 - 56
Signal Processing - May 2017 - 57
Signal Processing - May 2017 - 58
Signal Processing - May 2017 - 59
Signal Processing - May 2017 - 60
Signal Processing - May 2017 - 61
Signal Processing - May 2017 - 62
Signal Processing - May 2017 - 63
Signal Processing - May 2017 - 64
Signal Processing - May 2017 - 65
Signal Processing - May 2017 - 66
Signal Processing - May 2017 - 67
Signal Processing - May 2017 - 68
Signal Processing - May 2017 - 69
Signal Processing - May 2017 - 70
Signal Processing - May 2017 - 71
Signal Processing - May 2017 - 72
Signal Processing - May 2017 - 73
Signal Processing - May 2017 - 74
Signal Processing - May 2017 - 75
Signal Processing - May 2017 - 76
Signal Processing - May 2017 - 77
Signal Processing - May 2017 - 78
Signal Processing - May 2017 - 79
Signal Processing - May 2017 - 80
Signal Processing - May 2017 - 81
Signal Processing - May 2017 - 82
Signal Processing - May 2017 - 83
Signal Processing - May 2017 - 84
Signal Processing - May 2017 - 85
Signal Processing - May 2017 - 86
Signal Processing - May 2017 - 87
Signal Processing - May 2017 - 88
Signal Processing - May 2017 - 89
Signal Processing - May 2017 - 90
Signal Processing - May 2017 - 91
Signal Processing - May 2017 - 92
Signal Processing - May 2017 - 93
Signal Processing - May 2017 - 94
Signal Processing - May 2017 - 95
Signal Processing - May 2017 - 96
Signal Processing - May 2017 - 97
Signal Processing - May 2017 - 98
Signal Processing - May 2017 - 99
Signal Processing - May 2017 - 100
Signal Processing - May 2017 - 101
Signal Processing - May 2017 - 102
Signal Processing - May 2017 - 103
Signal Processing - May 2017 - 104
Signal Processing - May 2017 - 105
Signal Processing - May 2017 - 106
Signal Processing - May 2017 - 107
Signal Processing - May 2017 - 108
Signal Processing - May 2017 - 109
Signal Processing - May 2017 - 110
Signal Processing - May 2017 - 111
Signal Processing - May 2017 - 112
Signal Processing - May 2017 - Cover3
Signal Processing - May 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com