Signal Processing - May 2017 - 73
(a)
(b)
Figure 1. Different activities from the 2012 Engineering Summer Camp for high school students: (a) understanding frequency with speech and music
and (b) line-following robot.
The students also develop a method for
solving the multilateration problem
with noisy measurements using the
computer. This can be accomplished
either in Excel or in a programming
language such as MATLAB, depending
on the students' background.
Understanding frequency
with speech and music
This is a series of experiments in which
students are led to an understanding of
the importance of the concept of frequency in everyday signals, mainly in
speech and music. The experiments are
performed in real time on dedicated
digital signal processing (DSP) chips,
using a visual programming environment. Audio clips and the students' own
voices are taken as inputs via microphones, and loudspeakers are used as
the main outputs. In addition, preset oscilloscopes are used to obtain a realtime visual concept of the outputs. The
experiments enable the students to create
sound effects on their own, in addition to
performing assigned tasks. Figure 1(a)
shows students in the DSP laboratory
working on various experiments.
Experiment 1-Effects of suppressing and
removing frequencies from a signal
Students first synthesize and play sinusoids of various frequencies and change
frequencies while listening to the outputs.
They then synthesize and play sums of
sinusoids, both harmonically related and
nonharmonic, and change relative amplitudes while listening to the outputs. By
inputting an audio signal (music or the
student's voice) to the DSP board and listening to the effects of preprogrammed
filters (high pass, bandpass, and low
pass) on the signal, they observe how
these effects change as the cut-off frequencies are altered. The same exercise is
repeated by inputting a recorded audio
signal corrupted by noise and using a
low-pass filter to lower the noise audibility. Finally, some initial concepts related
to Fourier manipulation of signals is
introduced, and students synthesize or
input a square-wave and listen to the output. Then they pass the square-wave
through a narrow-band, bandpass filter,
and vary the center frequency to identify
the sinusoidal components. The outputs
are observed both audibly and on the
oscilloscope.
Experiment 2-Effects of shifting
and scrambling frequencies
A preprogrammed frequency shifter is
used to shift the frequencies of voice
inputs in both directions (up and down)
by up to an octave to demonstrate the
effects of pitch changes. The frequency
shifter demonstrates the limitations of
sampling by continually raising the output frequency until aliasing converts it
IEEE Signal Processing Magazine
|
May 2017
|
into a low frequency. Also, the frequency shifter is set to half of the sampling
frequency, which results in spectral
inversion (high frequencies are converted to low and vice versa). The result is
a simple voice scrambler, which is tested on the students' voices. Finally, a
more complex voice scrambler, based
on multiband spectral shifting and
inversion, is demonstrated and again
tested with the students' voices.
Line-following robot
Students learn concepts related to a linefollowing robot, a mobile machine that
automatically follows a specified path
without the need for human steering [Figure 1(b)]. Such a machine has various
applications in areas such as industrial
automation, warehousing, and automatic
guided vehicles on roads of the future. A
line-following robot has three main
components: a sensing system, a drive
system, and a microcontroller. The sensing system is responsible for determining the position of the robot with respect
to the line it has to follow; the drive system generates the motion of the robot;
and the microcontroller runs the control
algorithm that controls the speed and
direction of the robot along the specified
line. Students build, program, and test a
line-following robot. The sensing system consists of six reflective optical sensors. These sensors have a light-emitting
73
Table of Contents for the Digital Edition of Signal Processing - May 2017
Signal Processing - May 2017 - Cover1
Signal Processing - May 2017 - Cover2
Signal Processing - May 2017 - 1
Signal Processing - May 2017 - 2
Signal Processing - May 2017 - 3
Signal Processing - May 2017 - 4
Signal Processing - May 2017 - 5
Signal Processing - May 2017 - 6
Signal Processing - May 2017 - 7
Signal Processing - May 2017 - 8
Signal Processing - May 2017 - 9
Signal Processing - May 2017 - 10
Signal Processing - May 2017 - 11
Signal Processing - May 2017 - 12
Signal Processing - May 2017 - 13
Signal Processing - May 2017 - 14
Signal Processing - May 2017 - 15
Signal Processing - May 2017 - 16
Signal Processing - May 2017 - 17
Signal Processing - May 2017 - 18
Signal Processing - May 2017 - 19
Signal Processing - May 2017 - 20
Signal Processing - May 2017 - 21
Signal Processing - May 2017 - 22
Signal Processing - May 2017 - 23
Signal Processing - May 2017 - 24
Signal Processing - May 2017 - 25
Signal Processing - May 2017 - 26
Signal Processing - May 2017 - 27
Signal Processing - May 2017 - 28
Signal Processing - May 2017 - 29
Signal Processing - May 2017 - 30
Signal Processing - May 2017 - 31
Signal Processing - May 2017 - 32
Signal Processing - May 2017 - 33
Signal Processing - May 2017 - 34
Signal Processing - May 2017 - 35
Signal Processing - May 2017 - 36
Signal Processing - May 2017 - 37
Signal Processing - May 2017 - 38
Signal Processing - May 2017 - 39
Signal Processing - May 2017 - 40
Signal Processing - May 2017 - 41
Signal Processing - May 2017 - 42
Signal Processing - May 2017 - 43
Signal Processing - May 2017 - 44
Signal Processing - May 2017 - 45
Signal Processing - May 2017 - 46
Signal Processing - May 2017 - 47
Signal Processing - May 2017 - 48
Signal Processing - May 2017 - 49
Signal Processing - May 2017 - 50
Signal Processing - May 2017 - 51
Signal Processing - May 2017 - 52
Signal Processing - May 2017 - 53
Signal Processing - May 2017 - 54
Signal Processing - May 2017 - 55
Signal Processing - May 2017 - 56
Signal Processing - May 2017 - 57
Signal Processing - May 2017 - 58
Signal Processing - May 2017 - 59
Signal Processing - May 2017 - 60
Signal Processing - May 2017 - 61
Signal Processing - May 2017 - 62
Signal Processing - May 2017 - 63
Signal Processing - May 2017 - 64
Signal Processing - May 2017 - 65
Signal Processing - May 2017 - 66
Signal Processing - May 2017 - 67
Signal Processing - May 2017 - 68
Signal Processing - May 2017 - 69
Signal Processing - May 2017 - 70
Signal Processing - May 2017 - 71
Signal Processing - May 2017 - 72
Signal Processing - May 2017 - 73
Signal Processing - May 2017 - 74
Signal Processing - May 2017 - 75
Signal Processing - May 2017 - 76
Signal Processing - May 2017 - 77
Signal Processing - May 2017 - 78
Signal Processing - May 2017 - 79
Signal Processing - May 2017 - 80
Signal Processing - May 2017 - 81
Signal Processing - May 2017 - 82
Signal Processing - May 2017 - 83
Signal Processing - May 2017 - 84
Signal Processing - May 2017 - 85
Signal Processing - May 2017 - 86
Signal Processing - May 2017 - 87
Signal Processing - May 2017 - 88
Signal Processing - May 2017 - 89
Signal Processing - May 2017 - 90
Signal Processing - May 2017 - 91
Signal Processing - May 2017 - 92
Signal Processing - May 2017 - 93
Signal Processing - May 2017 - 94
Signal Processing - May 2017 - 95
Signal Processing - May 2017 - 96
Signal Processing - May 2017 - 97
Signal Processing - May 2017 - 98
Signal Processing - May 2017 - 99
Signal Processing - May 2017 - 100
Signal Processing - May 2017 - 101
Signal Processing - May 2017 - 102
Signal Processing - May 2017 - 103
Signal Processing - May 2017 - 104
Signal Processing - May 2017 - 105
Signal Processing - May 2017 - 106
Signal Processing - May 2017 - 107
Signal Processing - May 2017 - 108
Signal Processing - May 2017 - 109
Signal Processing - May 2017 - 110
Signal Processing - May 2017 - 111
Signal Processing - May 2017 - 112
Signal Processing - May 2017 - Cover3
Signal Processing - May 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com