Signal Processing - July 2017 - 119
probability, the probability margin between the two most likely
class labels, or the entropy of prediction [94]. In the context of
speech recognition, word posterior probabilities or the HMMstate entropy are frequently used as confidence measures [79],
[81]. When using a nonprobability model (e.g., an SVM), similar measures can be constructed from discriminant functions.
Considering the SVM as an example, pseudoprobabilistic
values can be transformed from the output distances from the
SVM hyperplane (see [17] for more details). The effectiveness
of this approach has been extensively assessed for emotion recognition from speech [83].
Despite the reported performance improvement, many studies have found that uncertainty-based AL is inclined toward
selecting noise and garbage data (i.e., outliers from the main
data distribution) for human labeling. This issue occurs even
more frequently when using AL to annotate data collected in
the wild, i.e., not under controlled laboratory conditions, where
environmental noises severely distort the speech, and many
unexpected words are potentially uttered. Labeling these outliers is usually difficult and time consuming [95]. Furthermore,
these data often offer little information on the overall system
performance [17], [95]. A straightforward solution to address
this outlier problem is to raise the threshold of a confidence
score. For example, the authors of [17] used a median uncertainty strategy instead of the least certainty one for actively
selecting spontaneously emotional utterances, which delivered
a positive performance improvement.
Sampling by uncertainty and density (SUD) is a more
sophisticated method that was introduced for ASR in [96]. In
this approach, unlabeled instances that are both near the decision boundary and very close to other examples are assumed to
be more important than those that are isolated (i.e., likely to be
outliers). Hence, SUD considers not only the most informative
data in terms of uncertainty but also the most representative
data in terms of density. That is, those data predicted with least
certainty and distributed in a low-density area are ignored.
A similar idea was proposed in [80], where the global criterion was used in ASR to maximize the expected lattice entropy reduction over all nontranscribed data. Specifically, it first
measures the entropy among the lattices generated by decoding unlabeled utterances. It then estimates the expected entropy reduction over the whole data set for each given utterance,
and selects the utterances that should deliver the highest entropy reduction for human labeling. After that, the transcribed
utterances can be weighted according to the number of similar
utterances in the whole data set to achieve better performance
for speech recognition. This algorithm is also analogous to the
error-rate reduction strategy introduced in [95].
Query by committee
This strategy uses a committee (group) of weak models (learners), denoted by H = {i 1, f, i k}, to select unlabeled data by
the principle of maximal disagreement among these models
[97]. Mathematically, this can be expressed as:
xl = argmax Q d (x; H).
x!U
(12)
The two key problems in committee-based approaches are 1)
constructing a committee H that represents competing
hypotheses and 2) defining a disagreement measurement Q d .
To alleviate the first problem, the models are usually built by
employing multiple different classifiers (e.g., HMMs, SVMs,
and RNNs) with the same training data, or by splitting the
training data or features into partitions for training several different versions of the same type of classifier, or by a combination thereof. For the second problem, the commonly used
disagreement measures are vote entropy and Kullback-Leibler
divergence (see [94] for more details). In speech recognition,
this strategy has been applied to both acoustic and language
models, resulting in a significant data annotation reduction
while achieving the same word accuracy [82].
Meta query strategies
One often deals with imbalance across classes of interest in
the data. As an example, for emotion recognition, the emotional speech of interest usually appears sparsely within a data
set, while the less interesting nonemotional speech often
appears at a much higher frequency. In this scenario, an initial
coarse model can be used to first decide which data are of
interest by distinguishing between neutral and emotional
speech. A subsequent finer model can be then used to recognize different emotions or respective other classes in other
tasks in the selected emotional speech data. An example of
such an approach is the sparse-tracking query strategy [83]. It
tracks only sparse (emotional) instances, via iterative retraining and labeling, using a novelty detection paradigm.
One issue when analyzing subjective speaker states and
traits (e.g., emotion and personality) is the requirement of multiple annotations per sample to obtain a reliable gold standard,
which linearly increases the annotation workload. Recently,
dynamic active query strategies have been shown to be successful in overcoming this issue [84]. These approaches, e.g.,
sequentially query human annotators to label a specific instance
up to the achievement of a predefined agreement level (i.e., a
certain number of votes for a specific class). The general idea
is to learn and exploit the varying reliability of raters to discern
whom to best trust and when. The results presented indicate
that this approach can contribute to a meaningful reduction of
annotation effort [84].
Cooperative learning
As discussed previously, SSL techniques can perform annotation work from machines with a bare minimum of human
intervention. However, the performance of SSL is hampered
by the issue of potential error accumulation [94]. Alternatively,
AL techniques have the potential to achieve higher accuracy
with fewer training labels by actively selecting the data it can
learn the most from. However, AL still requires a considerable
amount of human intervention.
To take advantage of the best of both approaches, it is plausible to jointly conduct AL and SSL in a unified CL framework [17]. A general CL flowchart is illustrated in Figure 3. CL
allows the sharing of the labeling effort between human and
IEEE SIGNAL PROCESSING MAGAZINE
|
July 2017
|
119
Table of Contents for the Digital Edition of Signal Processing - July 2017
Signal Processing - July 2017 - Cover1
Signal Processing - July 2017 - Cover2
Signal Processing - July 2017 - 1
Signal Processing - July 2017 - 2
Signal Processing - July 2017 - 3
Signal Processing - July 2017 - 4
Signal Processing - July 2017 - 5
Signal Processing - July 2017 - 6
Signal Processing - July 2017 - 7
Signal Processing - July 2017 - 8
Signal Processing - July 2017 - 9
Signal Processing - July 2017 - 10
Signal Processing - July 2017 - 11
Signal Processing - July 2017 - 12
Signal Processing - July 2017 - 13
Signal Processing - July 2017 - 14
Signal Processing - July 2017 - 15
Signal Processing - July 2017 - 16
Signal Processing - July 2017 - 17
Signal Processing - July 2017 - 18
Signal Processing - July 2017 - 19
Signal Processing - July 2017 - 20
Signal Processing - July 2017 - 21
Signal Processing - July 2017 - 22
Signal Processing - July 2017 - 23
Signal Processing - July 2017 - 24
Signal Processing - July 2017 - 25
Signal Processing - July 2017 - 26
Signal Processing - July 2017 - 27
Signal Processing - July 2017 - 28
Signal Processing - July 2017 - 29
Signal Processing - July 2017 - 30
Signal Processing - July 2017 - 31
Signal Processing - July 2017 - 32
Signal Processing - July 2017 - 33
Signal Processing - July 2017 - 34
Signal Processing - July 2017 - 35
Signal Processing - July 2017 - 36
Signal Processing - July 2017 - 37
Signal Processing - July 2017 - 38
Signal Processing - July 2017 - 39
Signal Processing - July 2017 - 40
Signal Processing - July 2017 - 41
Signal Processing - July 2017 - 42
Signal Processing - July 2017 - 43
Signal Processing - July 2017 - 44
Signal Processing - July 2017 - 45
Signal Processing - July 2017 - 46
Signal Processing - July 2017 - 47
Signal Processing - July 2017 - 48
Signal Processing - July 2017 - 49
Signal Processing - July 2017 - 50
Signal Processing - July 2017 - 51
Signal Processing - July 2017 - 52
Signal Processing - July 2017 - 53
Signal Processing - July 2017 - 54
Signal Processing - July 2017 - 55
Signal Processing - July 2017 - 56
Signal Processing - July 2017 - 57
Signal Processing - July 2017 - 58
Signal Processing - July 2017 - 59
Signal Processing - July 2017 - 60
Signal Processing - July 2017 - 61
Signal Processing - July 2017 - 62
Signal Processing - July 2017 - 63
Signal Processing - July 2017 - 64
Signal Processing - July 2017 - 65
Signal Processing - July 2017 - 66
Signal Processing - July 2017 - 67
Signal Processing - July 2017 - 68
Signal Processing - July 2017 - 69
Signal Processing - July 2017 - 70
Signal Processing - July 2017 - 71
Signal Processing - July 2017 - 72
Signal Processing - July 2017 - 73
Signal Processing - July 2017 - 74
Signal Processing - July 2017 - 75
Signal Processing - July 2017 - 76
Signal Processing - July 2017 - 77
Signal Processing - July 2017 - 78
Signal Processing - July 2017 - 79
Signal Processing - July 2017 - 80
Signal Processing - July 2017 - 81
Signal Processing - July 2017 - 82
Signal Processing - July 2017 - 83
Signal Processing - July 2017 - 84
Signal Processing - July 2017 - 85
Signal Processing - July 2017 - 86
Signal Processing - July 2017 - 87
Signal Processing - July 2017 - 88
Signal Processing - July 2017 - 89
Signal Processing - July 2017 - 90
Signal Processing - July 2017 - 91
Signal Processing - July 2017 - 92
Signal Processing - July 2017 - 93
Signal Processing - July 2017 - 94
Signal Processing - July 2017 - 95
Signal Processing - July 2017 - 96
Signal Processing - July 2017 - 97
Signal Processing - July 2017 - 98
Signal Processing - July 2017 - 99
Signal Processing - July 2017 - 100
Signal Processing - July 2017 - 101
Signal Processing - July 2017 - 102
Signal Processing - July 2017 - 103
Signal Processing - July 2017 - 104
Signal Processing - July 2017 - 105
Signal Processing - July 2017 - 106
Signal Processing - July 2017 - 107
Signal Processing - July 2017 - 108
Signal Processing - July 2017 - 109
Signal Processing - July 2017 - 110
Signal Processing - July 2017 - 111
Signal Processing - July 2017 - 112
Signal Processing - July 2017 - 113
Signal Processing - July 2017 - 114
Signal Processing - July 2017 - 115
Signal Processing - July 2017 - 116
Signal Processing - July 2017 - 117
Signal Processing - July 2017 - 118
Signal Processing - July 2017 - 119
Signal Processing - July 2017 - 120
Signal Processing - July 2017 - 121
Signal Processing - July 2017 - 122
Signal Processing - July 2017 - 123
Signal Processing - July 2017 - 124
Signal Processing - July 2017 - 125
Signal Processing - July 2017 - 126
Signal Processing - July 2017 - 127
Signal Processing - July 2017 - 128
Signal Processing - July 2017 - 129
Signal Processing - July 2017 - 130
Signal Processing - July 2017 - 131
Signal Processing - July 2017 - 132
Signal Processing - July 2017 - 133
Signal Processing - July 2017 - 134
Signal Processing - July 2017 - 135
Signal Processing - July 2017 - 136
Signal Processing - July 2017 - 137
Signal Processing - July 2017 - 138
Signal Processing - July 2017 - 139
Signal Processing - July 2017 - 140
Signal Processing - July 2017 - 141
Signal Processing - July 2017 - 142
Signal Processing - July 2017 - 143
Signal Processing - July 2017 - 144
Signal Processing - July 2017 - 145
Signal Processing - July 2017 - 146
Signal Processing - July 2017 - 147
Signal Processing - July 2017 - 148
Signal Processing - July 2017 - 149
Signal Processing - July 2017 - 150
Signal Processing - July 2017 - 151
Signal Processing - July 2017 - 152
Signal Processing - July 2017 - 153
Signal Processing - July 2017 - 154
Signal Processing - July 2017 - 155
Signal Processing - July 2017 - 156
Signal Processing - July 2017 - 157
Signal Processing - July 2017 - 158
Signal Processing - July 2017 - 159
Signal Processing - July 2017 - 160
Signal Processing - July 2017 - 161
Signal Processing - July 2017 - 162
Signal Processing - July 2017 - 163
Signal Processing - July 2017 - 164
Signal Processing - July 2017 - 165
Signal Processing - July 2017 - 166
Signal Processing - July 2017 - 167
Signal Processing - July 2017 - 168
Signal Processing - July 2017 - 169
Signal Processing - July 2017 - 170
Signal Processing - July 2017 - 171
Signal Processing - July 2017 - 172
Signal Processing - July 2017 - 173
Signal Processing - July 2017 - 174
Signal Processing - July 2017 - 175
Signal Processing - July 2017 - 176
Signal Processing - July 2017 - 177
Signal Processing - July 2017 - 178
Signal Processing - July 2017 - 179
Signal Processing - July 2017 - 180
Signal Processing - July 2017 - 181
Signal Processing - July 2017 - 182
Signal Processing - July 2017 - 183
Signal Processing - July 2017 - 184
Signal Processing - July 2017 - 185
Signal Processing - July 2017 - 186
Signal Processing - July 2017 - 187
Signal Processing - July 2017 - 188
Signal Processing - July 2017 - 189
Signal Processing - July 2017 - 190
Signal Processing - July 2017 - 191
Signal Processing - July 2017 - 192
Signal Processing - July 2017 - 193
Signal Processing - July 2017 - 194
Signal Processing - July 2017 - 195
Signal Processing - July 2017 - 196
Signal Processing - July 2017 - Cover3
Signal Processing - July 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com