Signal Processing - July 2017 - 20
[24] and [25]). Many methods for nonlinear dimensionality
setting, a generalization of convolution in the spatial domain
reduction consist of two steps: first, they start with conusing local charting [46]-[48] appears to be more appropriate.
structing a representation of local affinity of the data points
(typically, a sparsely connected graph). Second, the data
Brief history
points are embedded into a low-dimensional space, trying to
The main focus of this review is on this second class of probpreserve some criterion of the original affinity. For example,
lems, namely, learning functions on non-Euclidean structured
spectral embeddings tend to map points with many connecdomains, and, in particular, attempts to generalize the popular
tions between them to nearby locations, and multidimensionCNNs to such settings. The first attempts to generalize neural
al scaling (MDS)-type methods try to
networks to graphs we are aware of are due
preserve global information, such as graph
to Gori et al. [49], who proposed a scheme
Today, deep learning has
geodesic distances. Examples of manifold
matured into a technology combining recurrent neural networks (RNNs)
learning include different flavors of MDS
and random walk models. This approach
that is widely used in
[26], locally linear embedding [27], stowent almost unnoticed, reemerging in a
commercial applications.
chastic neighbor embedding [28], spectral
modern form in [50] and [51] due to the
embeddings, such as Laplacian eigenmaps
renewed recent interest in deep learning.
[29] and diffusion maps [30], and deep models [31]. Instead
The first formulation of CNNs on graphs is due to Bruna et al.
of embedding the vertices, the graph structure can be pro[52], who used the definition of convolutions in the spectral
cessed by decomposing it into small subgraphs called motifs
domain. Their article, while being of conceptual importance,
[36] or graphlets [37]. Finally, most recent approaches [32]-
came with significant computational drawbacks that fell short
[34] tried to apply the successful word-embedding model
of a truly useful method. These drawbacks were subsequently
[35] to graphs.
addressed in the follow-up works of Henaff et al. [44] and
In some cases, the data are presented as a manifold or
Defferrard et al. [45]. In the latter article, graph CNNs (GCNNs)
graph at the outset, and the first step of constructing the affinallowed achieving some state-of-the-art results.
ity structure described previously is unnecessary. For instance,
In a parallel effort in the computer vision and graphics
in computer graphics and vision applications, one can analyze
community, Masci et al. [47] showed the first CNN model on
3-D shapes represented as meshes by constructing local geomeshed surfaces, resorting to a spatial definition of the convometric descriptors capturing, e.g., curvature-like properties
lution operation based on local intrinsic patches. Among other
[38], [39]. In social network analysis applications the topologiapplications, such models were shown to achieve state-of-thecal structure of the social graph representing the social relaart performance in finding correspondence between deformable
tions between people carries important insights allowing, e.g.,
3-D shapes. Follow-up works proposed different construction of
to classify the vertices and detect communities [40]. In naturalintrinsic patches on point clouds [48], [53] and general graphs [54].
language processing, words in a corpus can be represented by
The interest in deep learning on graphs or manifolds has
the co-occurrence graph, where two words are connected if
exploded in the past year, resulting in numerous attempts to
they often appear near each other [41].
apply these methods to a broad spectrum of problems ranging
from biochemistry [55] to recommender systems [56]. Because
Data on a domain
such applications originate in different fields that usually do
Our second class of problems deals with analyzing functions
not cross-fertilize, publications in this domain tend to use difdefined on a given non-Euclidean domain. We can further
ferent terminology and notation, making it difficult for a newbreak down such problems into two subclasses: problems
comer to grasp the foundations and current state-of-the-art
where the domain is fixed and those where multiple domains
methods. We believe that our article comes at the right time,
are given. For example, assume that we are given the geoattempting to systemize and bring some order into the field.
graphic coordinates of the users of a social network, represented as a time-dependent signal on the vertices of the social
Signal processing, differential geometry,
graph. An important application in location-based social netand graph theory
works is to predict the position of the user given his or her
Geometric deep-learning frameworks dealt with in this paper are
past behavior as well as that of his or her friends [42]. In this
based on notions in differential geometry and graph theory.
problem, the domain (social graph) is assumed to be fixed;
Unfortunately, these topics are insufficiently known in the signal
methods of signal processing on graphs, which have previousprocessing community, and to our knowledge, there is no introly been reviewed in IEEE Signal Processing Magazine [43],
ductory-level reference treating these so different structures in a
can be applied to this setting, in particular, to define an
common way. One of our goals is to provide an accessible overoperation similar to convolution in the spectral domain. This,
view of these models, resorting as much as possible to the
in turn, allows generalizing CNN models to graphs [44], [45].
intuition of traditional signal processing.
In computer graphics and vision applications, finding similariOne of the key differences between Euclidean and nonty and correspondence between shapes are examples of the
Euclidean learning settings is the lack of traditional operasecond subclass of problems: each shape is modeled as a mantions such as convolutions. Various non-Euclidean convolutional
ifold, and one has to work with multiple such domains. In this
architectures differ in the way a convolution-like operation is
20
IEEE SIGNAL PROCESSING MAGAZINE
|
July 2017
|
Table of Contents for the Digital Edition of Signal Processing - July 2017
Signal Processing - July 2017 - Cover1
Signal Processing - July 2017 - Cover2
Signal Processing - July 2017 - 1
Signal Processing - July 2017 - 2
Signal Processing - July 2017 - 3
Signal Processing - July 2017 - 4
Signal Processing - July 2017 - 5
Signal Processing - July 2017 - 6
Signal Processing - July 2017 - 7
Signal Processing - July 2017 - 8
Signal Processing - July 2017 - 9
Signal Processing - July 2017 - 10
Signal Processing - July 2017 - 11
Signal Processing - July 2017 - 12
Signal Processing - July 2017 - 13
Signal Processing - July 2017 - 14
Signal Processing - July 2017 - 15
Signal Processing - July 2017 - 16
Signal Processing - July 2017 - 17
Signal Processing - July 2017 - 18
Signal Processing - July 2017 - 19
Signal Processing - July 2017 - 20
Signal Processing - July 2017 - 21
Signal Processing - July 2017 - 22
Signal Processing - July 2017 - 23
Signal Processing - July 2017 - 24
Signal Processing - July 2017 - 25
Signal Processing - July 2017 - 26
Signal Processing - July 2017 - 27
Signal Processing - July 2017 - 28
Signal Processing - July 2017 - 29
Signal Processing - July 2017 - 30
Signal Processing - July 2017 - 31
Signal Processing - July 2017 - 32
Signal Processing - July 2017 - 33
Signal Processing - July 2017 - 34
Signal Processing - July 2017 - 35
Signal Processing - July 2017 - 36
Signal Processing - July 2017 - 37
Signal Processing - July 2017 - 38
Signal Processing - July 2017 - 39
Signal Processing - July 2017 - 40
Signal Processing - July 2017 - 41
Signal Processing - July 2017 - 42
Signal Processing - July 2017 - 43
Signal Processing - July 2017 - 44
Signal Processing - July 2017 - 45
Signal Processing - July 2017 - 46
Signal Processing - July 2017 - 47
Signal Processing - July 2017 - 48
Signal Processing - July 2017 - 49
Signal Processing - July 2017 - 50
Signal Processing - July 2017 - 51
Signal Processing - July 2017 - 52
Signal Processing - July 2017 - 53
Signal Processing - July 2017 - 54
Signal Processing - July 2017 - 55
Signal Processing - July 2017 - 56
Signal Processing - July 2017 - 57
Signal Processing - July 2017 - 58
Signal Processing - July 2017 - 59
Signal Processing - July 2017 - 60
Signal Processing - July 2017 - 61
Signal Processing - July 2017 - 62
Signal Processing - July 2017 - 63
Signal Processing - July 2017 - 64
Signal Processing - July 2017 - 65
Signal Processing - July 2017 - 66
Signal Processing - July 2017 - 67
Signal Processing - July 2017 - 68
Signal Processing - July 2017 - 69
Signal Processing - July 2017 - 70
Signal Processing - July 2017 - 71
Signal Processing - July 2017 - 72
Signal Processing - July 2017 - 73
Signal Processing - July 2017 - 74
Signal Processing - July 2017 - 75
Signal Processing - July 2017 - 76
Signal Processing - July 2017 - 77
Signal Processing - July 2017 - 78
Signal Processing - July 2017 - 79
Signal Processing - July 2017 - 80
Signal Processing - July 2017 - 81
Signal Processing - July 2017 - 82
Signal Processing - July 2017 - 83
Signal Processing - July 2017 - 84
Signal Processing - July 2017 - 85
Signal Processing - July 2017 - 86
Signal Processing - July 2017 - 87
Signal Processing - July 2017 - 88
Signal Processing - July 2017 - 89
Signal Processing - July 2017 - 90
Signal Processing - July 2017 - 91
Signal Processing - July 2017 - 92
Signal Processing - July 2017 - 93
Signal Processing - July 2017 - 94
Signal Processing - July 2017 - 95
Signal Processing - July 2017 - 96
Signal Processing - July 2017 - 97
Signal Processing - July 2017 - 98
Signal Processing - July 2017 - 99
Signal Processing - July 2017 - 100
Signal Processing - July 2017 - 101
Signal Processing - July 2017 - 102
Signal Processing - July 2017 - 103
Signal Processing - July 2017 - 104
Signal Processing - July 2017 - 105
Signal Processing - July 2017 - 106
Signal Processing - July 2017 - 107
Signal Processing - July 2017 - 108
Signal Processing - July 2017 - 109
Signal Processing - July 2017 - 110
Signal Processing - July 2017 - 111
Signal Processing - July 2017 - 112
Signal Processing - July 2017 - 113
Signal Processing - July 2017 - 114
Signal Processing - July 2017 - 115
Signal Processing - July 2017 - 116
Signal Processing - July 2017 - 117
Signal Processing - July 2017 - 118
Signal Processing - July 2017 - 119
Signal Processing - July 2017 - 120
Signal Processing - July 2017 - 121
Signal Processing - July 2017 - 122
Signal Processing - July 2017 - 123
Signal Processing - July 2017 - 124
Signal Processing - July 2017 - 125
Signal Processing - July 2017 - 126
Signal Processing - July 2017 - 127
Signal Processing - July 2017 - 128
Signal Processing - July 2017 - 129
Signal Processing - July 2017 - 130
Signal Processing - July 2017 - 131
Signal Processing - July 2017 - 132
Signal Processing - July 2017 - 133
Signal Processing - July 2017 - 134
Signal Processing - July 2017 - 135
Signal Processing - July 2017 - 136
Signal Processing - July 2017 - 137
Signal Processing - July 2017 - 138
Signal Processing - July 2017 - 139
Signal Processing - July 2017 - 140
Signal Processing - July 2017 - 141
Signal Processing - July 2017 - 142
Signal Processing - July 2017 - 143
Signal Processing - July 2017 - 144
Signal Processing - July 2017 - 145
Signal Processing - July 2017 - 146
Signal Processing - July 2017 - 147
Signal Processing - July 2017 - 148
Signal Processing - July 2017 - 149
Signal Processing - July 2017 - 150
Signal Processing - July 2017 - 151
Signal Processing - July 2017 - 152
Signal Processing - July 2017 - 153
Signal Processing - July 2017 - 154
Signal Processing - July 2017 - 155
Signal Processing - July 2017 - 156
Signal Processing - July 2017 - 157
Signal Processing - July 2017 - 158
Signal Processing - July 2017 - 159
Signal Processing - July 2017 - 160
Signal Processing - July 2017 - 161
Signal Processing - July 2017 - 162
Signal Processing - July 2017 - 163
Signal Processing - July 2017 - 164
Signal Processing - July 2017 - 165
Signal Processing - July 2017 - 166
Signal Processing - July 2017 - 167
Signal Processing - July 2017 - 168
Signal Processing - July 2017 - 169
Signal Processing - July 2017 - 170
Signal Processing - July 2017 - 171
Signal Processing - July 2017 - 172
Signal Processing - July 2017 - 173
Signal Processing - July 2017 - 174
Signal Processing - July 2017 - 175
Signal Processing - July 2017 - 176
Signal Processing - July 2017 - 177
Signal Processing - July 2017 - 178
Signal Processing - July 2017 - 179
Signal Processing - July 2017 - 180
Signal Processing - July 2017 - 181
Signal Processing - July 2017 - 182
Signal Processing - July 2017 - 183
Signal Processing - July 2017 - 184
Signal Processing - July 2017 - 185
Signal Processing - July 2017 - 186
Signal Processing - July 2017 - 187
Signal Processing - July 2017 - 188
Signal Processing - July 2017 - 189
Signal Processing - July 2017 - 190
Signal Processing - July 2017 - 191
Signal Processing - July 2017 - 192
Signal Processing - July 2017 - 193
Signal Processing - July 2017 - 194
Signal Processing - July 2017 - 195
Signal Processing - July 2017 - 196
Signal Processing - July 2017 - Cover3
Signal Processing - July 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com