Signal Processing - July 2017 - 46

Riemman-type integral commonly used in signal processing,
and the integral can cover integration over domains that are more
general. The minimizer of the optimization problem above, c *,
is called the optimal transport plan. However, unlike the Monge
problem, in Kantorovich's formulation, the objective function
and the constraints are linear with respect to c (x, y) . Moreover,
Kantorovich's formulation is in the form of a convex optimization problem. We also note that the Monge problem is more
restrictive than the Kantorovich problem; i.e., in Monge's version, mass from a single location in X 0 is being sent to a single
location in X 1. Kantorovich's formulation, however, considers
transport plans that can deal with arbitrary measurable sets and
has the ability to distribute mass from the one location in one
density to multiple locations in another [see Figure 1(b)]. For any
transport map f: X 0 " X 1 there is an associated transport plan,
determined by

#{x ! A : f(x) ! B} I 0 (x) dx.

c (A # B) =

(5)
*

Furthermore, when an optimal transport map f exists, it can
be shown that the transport plan c * derived from (5) is an
optimal transportation plan [49].
The Kantorovich problem is especially interesting in a disM
crete setting, i.e., for PDFs of the form I 0 = / i = 1 p i d (x - x i)
N
and I 1 = / j = 1 q j d (y - y j), where d (x) is the Dirac delta
function. Generally speaking, for such PDFs a transport map
that pushes I0 into I1 does not exist. In these cases, mass splitting, as allowed by the Kantorovich formulation, is necessary
[see Figure 1(b)]. The Kantorovich problem can be written as
K (I 0, I 1) = min / / c (x i, y j) c ij
c

s.t. / c ij = p i,
j

i

j

/ c ij = q j
i

c ij $ 0, i = 1, ..., M, j = 1, ..., N,

(6)

where c ij identifies how much of the mass particle mi at xi
needs to be moved to yj [see Figure 1(b)]. The optimization
above has a linear objective function and linear constraints;
therefore, it is a linear programming problem. This problem
is convex (which, in practice, translates to a relatively easier
process of finding a global minimum), but not strictly so,
and the constraint provides a polyhedral set of M × N matrices. In practice, a nondiscrete measure is often approximated
by a discrete measure, and the Kantorovich problem is
solved through the linear programming optimization
expressed in (6).

Basic properties
Consider a transportation cost c(x, y) that is continuous and
bounded from below. Given two signals I0 and I1 as previously
shown, there always exists a transportation plan minimizing (4). This holds true for both when signals I0 and I1 are
functions and when they are discrete probability distributions [49]. Another important question is regarding the existence of an optimal transport map instead of a plan. Brenier
46

[9] addressed this problem for the special case where
c (x, y) = | x - y | 2. Bernier's results were later relaxed to
more general cases by Gangbo and McCann [20], which led
to the following theorem.

Theorem
Let I0 and I1 be nonnegative functions of the same total mass
and with bounded support. When c (x, y) = h (x - y) for some
strictly convex function h, then there exists a unique optimal
transportation map f * minimizing (1). In addition, the optimal transport plan is unique and given by (5). Moreover, if
c (x, y) = | x - y | 2, then there exists a (unique up to adding a
constant) convex function z such that f * = dz. A proof is
available in [20] and [49].

Optimal mass transport: Geometric properties
Wasserstein metric

Let Ω be a bounded subset of R d on which the signals are
defined. As an example, for signals (d = 1) or images (d = 2),
this can simply be the space [0, 1] d. Let P (X) be the set of
probability densities supported on Ω. The p-Wasserstein metric, Wp, for p $ 1 on P (X) is then defined as using the optimal transportation problem (4) with the cost function
c (x, y) = | x - y | p. For I0 and I1 in P (X) ,
1

W p (I 0, I 1) = ` * infc ! MP

#X # X | x - y | p dc (x, y) j p .

For any p $ 1, Wp is a metric on P (X) . The metric space
(P (X), W p) is referred to as the p-Wasserstein space. To understand the nature of the optimal transportation distances, it is
useful to note that for any p $ 1, the convergence with respect
to Wp is equivalent to the weak convergence of measures; i.e.,
W p (I n, I) " 0 as n " 3 if and only if for every bounded and
continuous function f: X " R

#X f (x) I n (x) dx " #X f (x) I (x) dx.
For the specific case of p = 1, the p-Wasserstein metric
is also known as the Monge-Rubinstein metric [49] or the
Earth mover's distance [44]. The p-Wasserstein metric in one
dimension has a simple characterization. For one-dimensional
(1-D) signals I0 and I1, the optimal transport map has a closedform solution. Let Fi be the cumulative distribution function
of Ii for i = 0, 1, i.e.,
Fi (x) =

#infx(X) I i (x) dx

for i = 0, 1.

Note that this is a nondecreasing function going from 0 to 1.
We define the pseudoinverse of F0 as follows: for z ! (0, 1),
F -1 (z) is the smallest x for which F0 (x) $ z , i.e.,
F 0-1 (z) = inf {x ! X : F0 (x) $ z}.
If I 0 2 0 , then F0 is continuous and increasing (and thus
invertible), and the inverse of the function F0 is equal to

IEEE SIGNAL PROCESSING MAGAZINE

|

July 2017

|



Table of Contents for the Digital Edition of Signal Processing - July 2017

Signal Processing - July 2017 - Cover1
Signal Processing - July 2017 - Cover2
Signal Processing - July 2017 - 1
Signal Processing - July 2017 - 2
Signal Processing - July 2017 - 3
Signal Processing - July 2017 - 4
Signal Processing - July 2017 - 5
Signal Processing - July 2017 - 6
Signal Processing - July 2017 - 7
Signal Processing - July 2017 - 8
Signal Processing - July 2017 - 9
Signal Processing - July 2017 - 10
Signal Processing - July 2017 - 11
Signal Processing - July 2017 - 12
Signal Processing - July 2017 - 13
Signal Processing - July 2017 - 14
Signal Processing - July 2017 - 15
Signal Processing - July 2017 - 16
Signal Processing - July 2017 - 17
Signal Processing - July 2017 - 18
Signal Processing - July 2017 - 19
Signal Processing - July 2017 - 20
Signal Processing - July 2017 - 21
Signal Processing - July 2017 - 22
Signal Processing - July 2017 - 23
Signal Processing - July 2017 - 24
Signal Processing - July 2017 - 25
Signal Processing - July 2017 - 26
Signal Processing - July 2017 - 27
Signal Processing - July 2017 - 28
Signal Processing - July 2017 - 29
Signal Processing - July 2017 - 30
Signal Processing - July 2017 - 31
Signal Processing - July 2017 - 32
Signal Processing - July 2017 - 33
Signal Processing - July 2017 - 34
Signal Processing - July 2017 - 35
Signal Processing - July 2017 - 36
Signal Processing - July 2017 - 37
Signal Processing - July 2017 - 38
Signal Processing - July 2017 - 39
Signal Processing - July 2017 - 40
Signal Processing - July 2017 - 41
Signal Processing - July 2017 - 42
Signal Processing - July 2017 - 43
Signal Processing - July 2017 - 44
Signal Processing - July 2017 - 45
Signal Processing - July 2017 - 46
Signal Processing - July 2017 - 47
Signal Processing - July 2017 - 48
Signal Processing - July 2017 - 49
Signal Processing - July 2017 - 50
Signal Processing - July 2017 - 51
Signal Processing - July 2017 - 52
Signal Processing - July 2017 - 53
Signal Processing - July 2017 - 54
Signal Processing - July 2017 - 55
Signal Processing - July 2017 - 56
Signal Processing - July 2017 - 57
Signal Processing - July 2017 - 58
Signal Processing - July 2017 - 59
Signal Processing - July 2017 - 60
Signal Processing - July 2017 - 61
Signal Processing - July 2017 - 62
Signal Processing - July 2017 - 63
Signal Processing - July 2017 - 64
Signal Processing - July 2017 - 65
Signal Processing - July 2017 - 66
Signal Processing - July 2017 - 67
Signal Processing - July 2017 - 68
Signal Processing - July 2017 - 69
Signal Processing - July 2017 - 70
Signal Processing - July 2017 - 71
Signal Processing - July 2017 - 72
Signal Processing - July 2017 - 73
Signal Processing - July 2017 - 74
Signal Processing - July 2017 - 75
Signal Processing - July 2017 - 76
Signal Processing - July 2017 - 77
Signal Processing - July 2017 - 78
Signal Processing - July 2017 - 79
Signal Processing - July 2017 - 80
Signal Processing - July 2017 - 81
Signal Processing - July 2017 - 82
Signal Processing - July 2017 - 83
Signal Processing - July 2017 - 84
Signal Processing - July 2017 - 85
Signal Processing - July 2017 - 86
Signal Processing - July 2017 - 87
Signal Processing - July 2017 - 88
Signal Processing - July 2017 - 89
Signal Processing - July 2017 - 90
Signal Processing - July 2017 - 91
Signal Processing - July 2017 - 92
Signal Processing - July 2017 - 93
Signal Processing - July 2017 - 94
Signal Processing - July 2017 - 95
Signal Processing - July 2017 - 96
Signal Processing - July 2017 - 97
Signal Processing - July 2017 - 98
Signal Processing - July 2017 - 99
Signal Processing - July 2017 - 100
Signal Processing - July 2017 - 101
Signal Processing - July 2017 - 102
Signal Processing - July 2017 - 103
Signal Processing - July 2017 - 104
Signal Processing - July 2017 - 105
Signal Processing - July 2017 - 106
Signal Processing - July 2017 - 107
Signal Processing - July 2017 - 108
Signal Processing - July 2017 - 109
Signal Processing - July 2017 - 110
Signal Processing - July 2017 - 111
Signal Processing - July 2017 - 112
Signal Processing - July 2017 - 113
Signal Processing - July 2017 - 114
Signal Processing - July 2017 - 115
Signal Processing - July 2017 - 116
Signal Processing - July 2017 - 117
Signal Processing - July 2017 - 118
Signal Processing - July 2017 - 119
Signal Processing - July 2017 - 120
Signal Processing - July 2017 - 121
Signal Processing - July 2017 - 122
Signal Processing - July 2017 - 123
Signal Processing - July 2017 - 124
Signal Processing - July 2017 - 125
Signal Processing - July 2017 - 126
Signal Processing - July 2017 - 127
Signal Processing - July 2017 - 128
Signal Processing - July 2017 - 129
Signal Processing - July 2017 - 130
Signal Processing - July 2017 - 131
Signal Processing - July 2017 - 132
Signal Processing - July 2017 - 133
Signal Processing - July 2017 - 134
Signal Processing - July 2017 - 135
Signal Processing - July 2017 - 136
Signal Processing - July 2017 - 137
Signal Processing - July 2017 - 138
Signal Processing - July 2017 - 139
Signal Processing - July 2017 - 140
Signal Processing - July 2017 - 141
Signal Processing - July 2017 - 142
Signal Processing - July 2017 - 143
Signal Processing - July 2017 - 144
Signal Processing - July 2017 - 145
Signal Processing - July 2017 - 146
Signal Processing - July 2017 - 147
Signal Processing - July 2017 - 148
Signal Processing - July 2017 - 149
Signal Processing - July 2017 - 150
Signal Processing - July 2017 - 151
Signal Processing - July 2017 - 152
Signal Processing - July 2017 - 153
Signal Processing - July 2017 - 154
Signal Processing - July 2017 - 155
Signal Processing - July 2017 - 156
Signal Processing - July 2017 - 157
Signal Processing - July 2017 - 158
Signal Processing - July 2017 - 159
Signal Processing - July 2017 - 160
Signal Processing - July 2017 - 161
Signal Processing - July 2017 - 162
Signal Processing - July 2017 - 163
Signal Processing - July 2017 - 164
Signal Processing - July 2017 - 165
Signal Processing - July 2017 - 166
Signal Processing - July 2017 - 167
Signal Processing - July 2017 - 168
Signal Processing - July 2017 - 169
Signal Processing - July 2017 - 170
Signal Processing - July 2017 - 171
Signal Processing - July 2017 - 172
Signal Processing - July 2017 - 173
Signal Processing - July 2017 - 174
Signal Processing - July 2017 - 175
Signal Processing - July 2017 - 176
Signal Processing - July 2017 - 177
Signal Processing - July 2017 - 178
Signal Processing - July 2017 - 179
Signal Processing - July 2017 - 180
Signal Processing - July 2017 - 181
Signal Processing - July 2017 - 182
Signal Processing - July 2017 - 183
Signal Processing - July 2017 - 184
Signal Processing - July 2017 - 185
Signal Processing - July 2017 - 186
Signal Processing - July 2017 - 187
Signal Processing - July 2017 - 188
Signal Processing - July 2017 - 189
Signal Processing - July 2017 - 190
Signal Processing - July 2017 - 191
Signal Processing - July 2017 - 192
Signal Processing - July 2017 - 193
Signal Processing - July 2017 - 194
Signal Processing - July 2017 - 195
Signal Processing - July 2017 - 196
Signal Processing - July 2017 - Cover3
Signal Processing - July 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com