Signal Processing - July 2017 - 52
O (N 2 ) [14] or O (N log (N )) using the convolutional
Wasserstein distance presented in [47] (compared to O (N 3) of
the linear programming methods), where N is the number of
delta masses in each of the measures. The disadvantage is that
it is difficult to obtain high-accuracy approximations of the
optimal transport plan. The entropy-regularized p-Wasserstein
distance, also known as the Sinkhorn distance, between PDFs
I0 and I1 defined on the metric space (X, d) is defined as
p
W p, m (I 0, I 1) = infc ! MP
+m #
X#X
#X # X d p (x, y) c (x, y) dxdy
c (x, y) ln (c (x, y)) dxdy,
(10)
where the regularizer is the negative entropy of the plan. We
p
note that this is not a true metric since W p, m (I 0, I 1) 2 0. Since
the entropy term is strictly concave, the overall optimization
in (10) becomes strictly convex. It is shown in [14] that the
entropy-regularized p-Wasserstein distance in (10) can be
reformulated as
p
W p, m (I 0, I 1) = m * inf
KL (c | K m),
! MP
c
where K m (x, y) = exp (- d p (x, y) /m) and KL (c | K m) is the
Kullback-Leibler (KL) divergence between c and K m . In
short, the regularizer enforces the plan to be within 1/m radius
in the KL-divergence sense from the transport plan
*
c 3 (x, y) = I 0 (x) I 1 (y) .
Cuturi shows that the optimal transport plan c in (10) is of
the form D v K m D w, where Dv and Dw are diagonal matrices
with diagonal entries v, w ! R N [14]; therefore, the number of
unknowns in the regularized formulation is reduced from N2
to 2N. The new problem can then be solved through computationally efficient algorithms such as the iterative proportional
fitting procedure, also known as the iterative proportional fitting procedure algorithm, or, alternatively, through the Sinkhorn-Knopp algorithm.
k=0
k = 20
k = 40
k = 60
k = 80
φk
∇φk
Flow minimization (AHT)
Angenent, Haker, and Tannenbaum [2], proposed a flow minimization scheme to obtain the optimal transport map from
the Monge problem. The method was used in several imageregistration applications [22], pattern recognition [27], [50],
and computer vision [26]. A brief review of the method is
provided here.
Let I 0: X " R + and I 1: Y " R + be continuous probability
densities defined on convex domains X, Y 3 R d . To find the
optimal transport map, f *, AHT starts with an initial transport map, f0: X " Y calculated from the Knothe-Rosenblatt
coupling [49]. Then it updates f0 to minimize the transport cost
while constraining it to remain a transport map from I0 to I1.
The updated equation for finding the optimal transport map in
AHT is calculated to be
fk + 1 (x) = fk (x) + e 1 Dfk ( fk - d (D -1 div ( fk))),
I0
where e is the step size, Df k is the Jacobian matrix, and D -1
is the Poisson solver with Neumann boundary conditions.
AHT show that for infinitesimal step size, e, fk (x) converges
to the optimal transport map. For a detailed derivation of the
preceding equation, see [2] and [24].
The AHT method is, in essence, a gradient descent method
on the Monge formulation of the optimal transport problem.
Chartrand, Wohlberg, Vixie, and Bollt (CWVB) [11] proposed
an alternative gradient-descent method based on Kantorovich's
dual formulation of the transport problem that updates the
optimal potential transport field, h (x), where f (x) = dh (x) .
Figure 6 presents the iterations of the CWVB method for two
face images taken from the YaleB face database.
Monge-Ampère equation
The Monge-Ampère PDE is defined as
det (Hz) = h (x, z, Dz)
for some functional h and where Hz is the Hessian matrix of
z. The Monge-Ampère PDE is closely related to the Monge
problem for the quadratic cost function. According to Bernier's
theorem (discussed in the "Basic Properties" section), when I0
and I1 are absolutely continuous PDFs defined on sets
X, Y 1 R n, the optimal transport map that minimizes the
2-Wasserstein metric is uniquely characterized as the gradient of a convex function z: X " Y. Moreover, we showed that
the mass-preserving constraint of the Monge problem can be
written as det (Df ) I 1 ( f ) = I 0 . Combining these results, one
can have
Ik
det (D (dz (x))) =
Ik = det(D∇ηk)I1(∇ηk), φk(x) = 1 x 2 - ηk (x)
2
FIGURE 6. A visualization of the iterative update of the transport potential
and correspondingly the transport displacement map through CWVB iterations. (Face portraits courtesy of the public Extended Yale Face Database B.)
52
I 0 (x)
,
I 1 (dz)
(11)
where Ddz = Hz, and, therefore, the equation shown above
is in the form of the Monge-Ampère PDE. Now, if z is a convex function on X satisfying dz (X) = Y and solving (11),
then f * = dz is the optimal transportation map from I0 to I1.
IEEE SIGNAL PROCESSING MAGAZINE
|
July 2017
|
Table of Contents for the Digital Edition of Signal Processing - July 2017
Signal Processing - July 2017 - Cover1
Signal Processing - July 2017 - Cover2
Signal Processing - July 2017 - 1
Signal Processing - July 2017 - 2
Signal Processing - July 2017 - 3
Signal Processing - July 2017 - 4
Signal Processing - July 2017 - 5
Signal Processing - July 2017 - 6
Signal Processing - July 2017 - 7
Signal Processing - July 2017 - 8
Signal Processing - July 2017 - 9
Signal Processing - July 2017 - 10
Signal Processing - July 2017 - 11
Signal Processing - July 2017 - 12
Signal Processing - July 2017 - 13
Signal Processing - July 2017 - 14
Signal Processing - July 2017 - 15
Signal Processing - July 2017 - 16
Signal Processing - July 2017 - 17
Signal Processing - July 2017 - 18
Signal Processing - July 2017 - 19
Signal Processing - July 2017 - 20
Signal Processing - July 2017 - 21
Signal Processing - July 2017 - 22
Signal Processing - July 2017 - 23
Signal Processing - July 2017 - 24
Signal Processing - July 2017 - 25
Signal Processing - July 2017 - 26
Signal Processing - July 2017 - 27
Signal Processing - July 2017 - 28
Signal Processing - July 2017 - 29
Signal Processing - July 2017 - 30
Signal Processing - July 2017 - 31
Signal Processing - July 2017 - 32
Signal Processing - July 2017 - 33
Signal Processing - July 2017 - 34
Signal Processing - July 2017 - 35
Signal Processing - July 2017 - 36
Signal Processing - July 2017 - 37
Signal Processing - July 2017 - 38
Signal Processing - July 2017 - 39
Signal Processing - July 2017 - 40
Signal Processing - July 2017 - 41
Signal Processing - July 2017 - 42
Signal Processing - July 2017 - 43
Signal Processing - July 2017 - 44
Signal Processing - July 2017 - 45
Signal Processing - July 2017 - 46
Signal Processing - July 2017 - 47
Signal Processing - July 2017 - 48
Signal Processing - July 2017 - 49
Signal Processing - July 2017 - 50
Signal Processing - July 2017 - 51
Signal Processing - July 2017 - 52
Signal Processing - July 2017 - 53
Signal Processing - July 2017 - 54
Signal Processing - July 2017 - 55
Signal Processing - July 2017 - 56
Signal Processing - July 2017 - 57
Signal Processing - July 2017 - 58
Signal Processing - July 2017 - 59
Signal Processing - July 2017 - 60
Signal Processing - July 2017 - 61
Signal Processing - July 2017 - 62
Signal Processing - July 2017 - 63
Signal Processing - July 2017 - 64
Signal Processing - July 2017 - 65
Signal Processing - July 2017 - 66
Signal Processing - July 2017 - 67
Signal Processing - July 2017 - 68
Signal Processing - July 2017 - 69
Signal Processing - July 2017 - 70
Signal Processing - July 2017 - 71
Signal Processing - July 2017 - 72
Signal Processing - July 2017 - 73
Signal Processing - July 2017 - 74
Signal Processing - July 2017 - 75
Signal Processing - July 2017 - 76
Signal Processing - July 2017 - 77
Signal Processing - July 2017 - 78
Signal Processing - July 2017 - 79
Signal Processing - July 2017 - 80
Signal Processing - July 2017 - 81
Signal Processing - July 2017 - 82
Signal Processing - July 2017 - 83
Signal Processing - July 2017 - 84
Signal Processing - July 2017 - 85
Signal Processing - July 2017 - 86
Signal Processing - July 2017 - 87
Signal Processing - July 2017 - 88
Signal Processing - July 2017 - 89
Signal Processing - July 2017 - 90
Signal Processing - July 2017 - 91
Signal Processing - July 2017 - 92
Signal Processing - July 2017 - 93
Signal Processing - July 2017 - 94
Signal Processing - July 2017 - 95
Signal Processing - July 2017 - 96
Signal Processing - July 2017 - 97
Signal Processing - July 2017 - 98
Signal Processing - July 2017 - 99
Signal Processing - July 2017 - 100
Signal Processing - July 2017 - 101
Signal Processing - July 2017 - 102
Signal Processing - July 2017 - 103
Signal Processing - July 2017 - 104
Signal Processing - July 2017 - 105
Signal Processing - July 2017 - 106
Signal Processing - July 2017 - 107
Signal Processing - July 2017 - 108
Signal Processing - July 2017 - 109
Signal Processing - July 2017 - 110
Signal Processing - July 2017 - 111
Signal Processing - July 2017 - 112
Signal Processing - July 2017 - 113
Signal Processing - July 2017 - 114
Signal Processing - July 2017 - 115
Signal Processing - July 2017 - 116
Signal Processing - July 2017 - 117
Signal Processing - July 2017 - 118
Signal Processing - July 2017 - 119
Signal Processing - July 2017 - 120
Signal Processing - July 2017 - 121
Signal Processing - July 2017 - 122
Signal Processing - July 2017 - 123
Signal Processing - July 2017 - 124
Signal Processing - July 2017 - 125
Signal Processing - July 2017 - 126
Signal Processing - July 2017 - 127
Signal Processing - July 2017 - 128
Signal Processing - July 2017 - 129
Signal Processing - July 2017 - 130
Signal Processing - July 2017 - 131
Signal Processing - July 2017 - 132
Signal Processing - July 2017 - 133
Signal Processing - July 2017 - 134
Signal Processing - July 2017 - 135
Signal Processing - July 2017 - 136
Signal Processing - July 2017 - 137
Signal Processing - July 2017 - 138
Signal Processing - July 2017 - 139
Signal Processing - July 2017 - 140
Signal Processing - July 2017 - 141
Signal Processing - July 2017 - 142
Signal Processing - July 2017 - 143
Signal Processing - July 2017 - 144
Signal Processing - July 2017 - 145
Signal Processing - July 2017 - 146
Signal Processing - July 2017 - 147
Signal Processing - July 2017 - 148
Signal Processing - July 2017 - 149
Signal Processing - July 2017 - 150
Signal Processing - July 2017 - 151
Signal Processing - July 2017 - 152
Signal Processing - July 2017 - 153
Signal Processing - July 2017 - 154
Signal Processing - July 2017 - 155
Signal Processing - July 2017 - 156
Signal Processing - July 2017 - 157
Signal Processing - July 2017 - 158
Signal Processing - July 2017 - 159
Signal Processing - July 2017 - 160
Signal Processing - July 2017 - 161
Signal Processing - July 2017 - 162
Signal Processing - July 2017 - 163
Signal Processing - July 2017 - 164
Signal Processing - July 2017 - 165
Signal Processing - July 2017 - 166
Signal Processing - July 2017 - 167
Signal Processing - July 2017 - 168
Signal Processing - July 2017 - 169
Signal Processing - July 2017 - 170
Signal Processing - July 2017 - 171
Signal Processing - July 2017 - 172
Signal Processing - July 2017 - 173
Signal Processing - July 2017 - 174
Signal Processing - July 2017 - 175
Signal Processing - July 2017 - 176
Signal Processing - July 2017 - 177
Signal Processing - July 2017 - 178
Signal Processing - July 2017 - 179
Signal Processing - July 2017 - 180
Signal Processing - July 2017 - 181
Signal Processing - July 2017 - 182
Signal Processing - July 2017 - 183
Signal Processing - July 2017 - 184
Signal Processing - July 2017 - 185
Signal Processing - July 2017 - 186
Signal Processing - July 2017 - 187
Signal Processing - July 2017 - 188
Signal Processing - July 2017 - 189
Signal Processing - July 2017 - 190
Signal Processing - July 2017 - 191
Signal Processing - July 2017 - 192
Signal Processing - July 2017 - 193
Signal Processing - July 2017 - 194
Signal Processing - July 2017 - 195
Signal Processing - July 2017 - 196
Signal Processing - July 2017 - Cover3
Signal Processing - July 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com