Signal Processing - September 2016 - 152

Cruise
Ship

log-var of
Wavelet Detail Signal 3

log-var of
Wavelet Detail Signal 1

Lebanon
100
50
Quebec
0
-50
100

Texas

U.S. West

U.S. East

50

Wa
0
vel log-v
et
De ar of -50
tail
-100
Sig
na
l2

(a)

50
0
f
5
-50
o
nal
var
-100
log- tail Sig
t De
vele
Wa

100

100

China

50
0

Tenerife

-50

India

-100
100

Turkey

50
0
Wa
vel log-va -50
et D
r of
eta
-100
il S
ign
al 4

Ireland

-100

-95
Mean

-60
-70
-80
ent
Segm
f ENF

o

(b)

FigurE 3. An example of features derived from ENF signals for differentiating the originating power grids.

nominal ENF, 3) audio signals with
50-Hz nominal ENF, and 4) audio signals with 60-Hz nominal ENF. While
each team had their own design for the
learning and classification system,
their solutions all consisted of four
subsystems, one dedicated to each data
type. Some of these subsystems had
certain variations in the way the ENF
signals were extracted or utilized different discriminating features, depending on which of the four types to which
the signal belonged.
The first-place winning team, Team
Resonance_1011 from Bangladesh,
employed two-stage support vector
machine (SVM) classifiers for each data
type. The first one is a one-class SVM
classifier that decides if the signal belongs
to a grid seen in training, and the second
SVM classifier narrows down the list of
possible grids on the basis of different discriminating features extracted from the
embedded ENF signals. The last stage of

F-400 mA R1
TX1
11 kΩ
Power
Source

the classification is where the testing signal is passed to a "pole-matching" classifier to reach a final decision on the grid
of origin based on the minimum distance
between the estimated poles of the training and testing grids.
Team Hammer Down from the United
States, which took second place, carefully
studied the characteristics of the signals
for this problem and proposed a different
method from what is available in the
recent ENF literature. The team's novel
method utilized a multiharmonic histogram to analyze ENF signals for identifying power grids. Team members
computed ENF signals at multiple harmonic locations and extracted histograms
of 1) ENF magnitudes, 2) the signal
power around the ENF, 3) the noise
power around the ENF, and 4) the signalto-noise ratio of the ENF. At the classification stage, they proposed a histogram
matching method with a multilayer decision rule for identification.

C1

R4-200 kΩ

0.1 µC
R2
1.5 kΩ

R3
50 kΩ

C2
Output
0.01 µC

220/28 V

FigurE 4. A circuit diagram from Team UpatrasECE from the University of Upatras, Greece.
152

IEEE Signal Processing Magazine

|

September 2016

|

Team Vidyut from India, which took
third place, used a multistage SVM system where, for each input test recording,
five predictions from five respective classifiers were received. To compute the
confidence of a prediction, team members
proposed an entropy-based measure of
confidence where lower entropy means
higher confidence. For audio signals, they
used an additional subband classifier that
captures the relative strength among the
different ENF harmonic components captured by a recording. The team used
custom-designed detectors to resolve
conflicts in decision between their SVM
and subband classifiers.

Sensing circuits
For the hardware and signal acquisition
tasks in the SP Cup that aimed at bringing
out the synergy of sensing, processing,
and learning, nearly all participating teams
built their own circuit for collecting reference power recordings from the team's
respective locations. Useful references
include an article in IEEE Signal Processing Magazine on observing the grid [7] as
well as ENF-related literature [3], [5], [8].
Among the submissions received, some
teams adopted the reference design, while
other teams made improvements, incorporated innovative features, or employed different implementations.
Given that this is the first time the SP
Cup competitions included sensing hardware design and implementation in addition to algorithmic tasks, the judging



Table of Contents for the Digital Edition of Signal Processing - September 2016

Signal Processing - September 2016 - Cover1
Signal Processing - September 2016 - Cover2
Signal Processing - September 2016 - 1
Signal Processing - September 2016 - 2
Signal Processing - September 2016 - 3
Signal Processing - September 2016 - 4
Signal Processing - September 2016 - 5
Signal Processing - September 2016 - 6
Signal Processing - September 2016 - 7
Signal Processing - September 2016 - 8
Signal Processing - September 2016 - 9
Signal Processing - September 2016 - 10
Signal Processing - September 2016 - 11
Signal Processing - September 2016 - 12
Signal Processing - September 2016 - 13
Signal Processing - September 2016 - 14
Signal Processing - September 2016 - 15
Signal Processing - September 2016 - 16
Signal Processing - September 2016 - 17
Signal Processing - September 2016 - 18
Signal Processing - September 2016 - 19
Signal Processing - September 2016 - 20
Signal Processing - September 2016 - 21
Signal Processing - September 2016 - 22
Signal Processing - September 2016 - 23
Signal Processing - September 2016 - 24
Signal Processing - September 2016 - 25
Signal Processing - September 2016 - 26
Signal Processing - September 2016 - 27
Signal Processing - September 2016 - 28
Signal Processing - September 2016 - 29
Signal Processing - September 2016 - 30
Signal Processing - September 2016 - 31
Signal Processing - September 2016 - 32
Signal Processing - September 2016 - 33
Signal Processing - September 2016 - 34
Signal Processing - September 2016 - 35
Signal Processing - September 2016 - 36
Signal Processing - September 2016 - 37
Signal Processing - September 2016 - 38
Signal Processing - September 2016 - 39
Signal Processing - September 2016 - 40
Signal Processing - September 2016 - 41
Signal Processing - September 2016 - 42
Signal Processing - September 2016 - 43
Signal Processing - September 2016 - 44
Signal Processing - September 2016 - 45
Signal Processing - September 2016 - 46
Signal Processing - September 2016 - 47
Signal Processing - September 2016 - 48
Signal Processing - September 2016 - 49
Signal Processing - September 2016 - 50
Signal Processing - September 2016 - 51
Signal Processing - September 2016 - 52
Signal Processing - September 2016 - 53
Signal Processing - September 2016 - 54
Signal Processing - September 2016 - 55
Signal Processing - September 2016 - 56
Signal Processing - September 2016 - 57
Signal Processing - September 2016 - 58
Signal Processing - September 2016 - 59
Signal Processing - September 2016 - 60
Signal Processing - September 2016 - 61
Signal Processing - September 2016 - 62
Signal Processing - September 2016 - 63
Signal Processing - September 2016 - 64
Signal Processing - September 2016 - 65
Signal Processing - September 2016 - 66
Signal Processing - September 2016 - 67
Signal Processing - September 2016 - 68
Signal Processing - September 2016 - 69
Signal Processing - September 2016 - 70
Signal Processing - September 2016 - 71
Signal Processing - September 2016 - 72
Signal Processing - September 2016 - 73
Signal Processing - September 2016 - 74
Signal Processing - September 2016 - 75
Signal Processing - September 2016 - 76
Signal Processing - September 2016 - 77
Signal Processing - September 2016 - 78
Signal Processing - September 2016 - 79
Signal Processing - September 2016 - 80
Signal Processing - September 2016 - 81
Signal Processing - September 2016 - 82
Signal Processing - September 2016 - 83
Signal Processing - September 2016 - 84
Signal Processing - September 2016 - 85
Signal Processing - September 2016 - 86
Signal Processing - September 2016 - 87
Signal Processing - September 2016 - 88
Signal Processing - September 2016 - 89
Signal Processing - September 2016 - 90
Signal Processing - September 2016 - 91
Signal Processing - September 2016 - 92
Signal Processing - September 2016 - 93
Signal Processing - September 2016 - 94
Signal Processing - September 2016 - 95
Signal Processing - September 2016 - 96
Signal Processing - September 2016 - 97
Signal Processing - September 2016 - 98
Signal Processing - September 2016 - 99
Signal Processing - September 2016 - 100
Signal Processing - September 2016 - 101
Signal Processing - September 2016 - 102
Signal Processing - September 2016 - 103
Signal Processing - September 2016 - 104
Signal Processing - September 2016 - 105
Signal Processing - September 2016 - 106
Signal Processing - September 2016 - 107
Signal Processing - September 2016 - 108
Signal Processing - September 2016 - 109
Signal Processing - September 2016 - 110
Signal Processing - September 2016 - 111
Signal Processing - September 2016 - 112
Signal Processing - September 2016 - 113
Signal Processing - September 2016 - 114
Signal Processing - September 2016 - 115
Signal Processing - September 2016 - 116
Signal Processing - September 2016 - 117
Signal Processing - September 2016 - 118
Signal Processing - September 2016 - 119
Signal Processing - September 2016 - 120
Signal Processing - September 2016 - 121
Signal Processing - September 2016 - 122
Signal Processing - September 2016 - 123
Signal Processing - September 2016 - 124
Signal Processing - September 2016 - 125
Signal Processing - September 2016 - 126
Signal Processing - September 2016 - 127
Signal Processing - September 2016 - 128
Signal Processing - September 2016 - 129
Signal Processing - September 2016 - 130
Signal Processing - September 2016 - 131
Signal Processing - September 2016 - 132
Signal Processing - September 2016 - 133
Signal Processing - September 2016 - 134
Signal Processing - September 2016 - 135
Signal Processing - September 2016 - 136
Signal Processing - September 2016 - 137
Signal Processing - September 2016 - 138
Signal Processing - September 2016 - 139
Signal Processing - September 2016 - 140
Signal Processing - September 2016 - 141
Signal Processing - September 2016 - 142
Signal Processing - September 2016 - 143
Signal Processing - September 2016 - 144
Signal Processing - September 2016 - 145
Signal Processing - September 2016 - 146
Signal Processing - September 2016 - 147
Signal Processing - September 2016 - 148
Signal Processing - September 2016 - 149
Signal Processing - September 2016 - 150
Signal Processing - September 2016 - 151
Signal Processing - September 2016 - 152
Signal Processing - September 2016 - 153
Signal Processing - September 2016 - 154
Signal Processing - September 2016 - 155
Signal Processing - September 2016 - 156
Signal Processing - September 2016 - 157
Signal Processing - September 2016 - 158
Signal Processing - September 2016 - 159
Signal Processing - September 2016 - 160
Signal Processing - September 2016 - 161
Signal Processing - September 2016 - 162
Signal Processing - September 2016 - 163
Signal Processing - September 2016 - 164
Signal Processing - September 2016 - 165
Signal Processing - September 2016 - 166
Signal Processing - September 2016 - 167
Signal Processing - September 2016 - 168
Signal Processing - September 2016 - 169
Signal Processing - September 2016 - 170
Signal Processing - September 2016 - 171
Signal Processing - September 2016 - 172
Signal Processing - September 2016 - 173
Signal Processing - September 2016 - 174
Signal Processing - September 2016 - 175
Signal Processing - September 2016 - 176
Signal Processing - September 2016 - Cover3
Signal Processing - September 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com