Signal Processing - September 2016 - 85

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.2
0.1
0
-0.1
-0.2
(a)

(b)

0.2
0.1
0
-0.1
-0.2
0.1
0.05
0
-0.05
-0.1

(c)

Figure 1. (a) 8 × 8 signature tiles (2-D sequency patterns) corresponding to the 64 SRBs that partition the Hadamard domain. (b) A 768 × 1024 ground
truth scene. (c) Four low-resolution 96 × 128 signature previews from the four lowest-sequency blocks [marked in red in (a)], which all have 100%
complete sampling. (Figure courtesy of www.dpreview.com.)

observed scene, or it could be a standard unitary matrix such
as the DCT.
The SRB Kronecker product (4) can easily be obtained from
either of the typical Kronecker products A 7 B or B 7 A.
That is, there exist permutation matrices P and Q such that
A 7 SRB {B} = P (A 7 B) = (B 7 A) Q. This is significant
because, if observations of a scene with the rows of an SRB
Kronecker product matrix are collected, the typical Kronecker
product and its inverse can be used (and their fast implementations, if they exist) for global processing of the whole image.
Yet, at the same time, the SRB structure lets us group measurements according to the local signatures, which has value since
it is the local information that contains details such as edges,
textures, or anomalies within a signal/scene of interest. This
enables properties such as the ability to view the data either
within the context of particular SRBs or within the context of
the larger transform space, analyze or solve an imaging/inference problem as L separate smaller problems or as one large
problem, assess the SNR of a particular SRB's coefficients and/
or determine optimal bit allocation, quickly generate downsampled previews of the scene filtered through each signature,
and subsample within certain SRBs, e.g., in CI applications.
The last two items are examined in the next section.

Using signature row-block Kronecker products for CI
It is easy to extend the SRB Kronecker product (4) to 2-D
imaging applications. In this case, the SRB structure naturally endows the measurement space with a convenient 2-D partitioning now based on local signature tiles, instead of the
one-dimensional signature rows discussed previously. For
computational imaging, the rows of a Hadamard matrix can
be reshaped into the 2-D spatial modulating waveforms used,
e.g., on the digital micromirror device (DMD) used in the
SPC. In this application, each element of a given row is
mapped to one mirror of the DMD, and the !1 values determines whether it is in an ON or OFF state. Hadamard matrices have been used extensively as sensing matrices in CI since
they have been shown to be incoherent to sparse signals. Further, the fast implementation of many Hadamard transforms

means that the reconstruction algorithms can quickly converge to a solution. Many CI applications also apply a scrambling operation to the Hadamard matrix, e.g., randomly
permuting the columns. This breaks up the structure and
results in pseudorandom binary patterns that can be beneficial
in certain situations. However, this is different than the
approach taken here.
At the same time, Hadamard patterns can be used in a more
traditional transform coding/decoding manner. Power-of-two
Hadamard transforms have good energy compaction properties, similar to the DCT. We can utilize this fact in conjunction with the partitioned block structure provided by the SRB
Kronecker product. Now, with A as a Hadamard matrix, each
individual SRB B j in (4) is an orthogonal basis for a subspace
encoded or filtered by the signature b j . Further, with B also
as a Hadamard matrix, the set of SRBs {B j} are orthogonal to
each other. With B specifically as a power-of-four Hadamard
matrix H 4 n, for some n, the signatures will span all possible
sequencies when observing 2 n # 2 n patches of pixels, which
is similar to the range of spatial frequencies in the 2-D DCT.
For example, if matrix B is a Walsh-Hadamard matrix H 64 in
(4), the measurement space is divided into 64 SRBs associated
with the 2-D signature 8 # 8 tiles shown in Figure 1. Each of
these signature tiles correspond to one row of H 64 that has been
reshaped to 2-D.
The SRB structure of the deterministic sensing matrix
A 7 SRB {B} lends itself to selective and model-based sampling strategies. We are free to choose which SRBs we want
to sample from, and we can choose to sample them partially or completely. This leads to a partial-complete sensing
approach [20] that is essentially a block-structured version
of variable density sampling. Note that SRBs that are completely sampled at 100% can be easily and quickly demodulated by removing the multiplexing effect of matrix A (more
details can be found in [19]). This provides a low-resolution
preview of the scene filtered through the signature tile associated with a particular SRB. To see this, consider the scene
with N = 768 # 1024 = 12·2 16 pixels shown Figure 1. If we
want to construct an SRB Kronecker matrix with B = H 64

IEEE SIgnal ProcESSIng MagazInE

|

September 2016

|

85


http://www.dpreview.com

Table of Contents for the Digital Edition of Signal Processing - September 2016

Signal Processing - September 2016 - Cover1
Signal Processing - September 2016 - Cover2
Signal Processing - September 2016 - 1
Signal Processing - September 2016 - 2
Signal Processing - September 2016 - 3
Signal Processing - September 2016 - 4
Signal Processing - September 2016 - 5
Signal Processing - September 2016 - 6
Signal Processing - September 2016 - 7
Signal Processing - September 2016 - 8
Signal Processing - September 2016 - 9
Signal Processing - September 2016 - 10
Signal Processing - September 2016 - 11
Signal Processing - September 2016 - 12
Signal Processing - September 2016 - 13
Signal Processing - September 2016 - 14
Signal Processing - September 2016 - 15
Signal Processing - September 2016 - 16
Signal Processing - September 2016 - 17
Signal Processing - September 2016 - 18
Signal Processing - September 2016 - 19
Signal Processing - September 2016 - 20
Signal Processing - September 2016 - 21
Signal Processing - September 2016 - 22
Signal Processing - September 2016 - 23
Signal Processing - September 2016 - 24
Signal Processing - September 2016 - 25
Signal Processing - September 2016 - 26
Signal Processing - September 2016 - 27
Signal Processing - September 2016 - 28
Signal Processing - September 2016 - 29
Signal Processing - September 2016 - 30
Signal Processing - September 2016 - 31
Signal Processing - September 2016 - 32
Signal Processing - September 2016 - 33
Signal Processing - September 2016 - 34
Signal Processing - September 2016 - 35
Signal Processing - September 2016 - 36
Signal Processing - September 2016 - 37
Signal Processing - September 2016 - 38
Signal Processing - September 2016 - 39
Signal Processing - September 2016 - 40
Signal Processing - September 2016 - 41
Signal Processing - September 2016 - 42
Signal Processing - September 2016 - 43
Signal Processing - September 2016 - 44
Signal Processing - September 2016 - 45
Signal Processing - September 2016 - 46
Signal Processing - September 2016 - 47
Signal Processing - September 2016 - 48
Signal Processing - September 2016 - 49
Signal Processing - September 2016 - 50
Signal Processing - September 2016 - 51
Signal Processing - September 2016 - 52
Signal Processing - September 2016 - 53
Signal Processing - September 2016 - 54
Signal Processing - September 2016 - 55
Signal Processing - September 2016 - 56
Signal Processing - September 2016 - 57
Signal Processing - September 2016 - 58
Signal Processing - September 2016 - 59
Signal Processing - September 2016 - 60
Signal Processing - September 2016 - 61
Signal Processing - September 2016 - 62
Signal Processing - September 2016 - 63
Signal Processing - September 2016 - 64
Signal Processing - September 2016 - 65
Signal Processing - September 2016 - 66
Signal Processing - September 2016 - 67
Signal Processing - September 2016 - 68
Signal Processing - September 2016 - 69
Signal Processing - September 2016 - 70
Signal Processing - September 2016 - 71
Signal Processing - September 2016 - 72
Signal Processing - September 2016 - 73
Signal Processing - September 2016 - 74
Signal Processing - September 2016 - 75
Signal Processing - September 2016 - 76
Signal Processing - September 2016 - 77
Signal Processing - September 2016 - 78
Signal Processing - September 2016 - 79
Signal Processing - September 2016 - 80
Signal Processing - September 2016 - 81
Signal Processing - September 2016 - 82
Signal Processing - September 2016 - 83
Signal Processing - September 2016 - 84
Signal Processing - September 2016 - 85
Signal Processing - September 2016 - 86
Signal Processing - September 2016 - 87
Signal Processing - September 2016 - 88
Signal Processing - September 2016 - 89
Signal Processing - September 2016 - 90
Signal Processing - September 2016 - 91
Signal Processing - September 2016 - 92
Signal Processing - September 2016 - 93
Signal Processing - September 2016 - 94
Signal Processing - September 2016 - 95
Signal Processing - September 2016 - 96
Signal Processing - September 2016 - 97
Signal Processing - September 2016 - 98
Signal Processing - September 2016 - 99
Signal Processing - September 2016 - 100
Signal Processing - September 2016 - 101
Signal Processing - September 2016 - 102
Signal Processing - September 2016 - 103
Signal Processing - September 2016 - 104
Signal Processing - September 2016 - 105
Signal Processing - September 2016 - 106
Signal Processing - September 2016 - 107
Signal Processing - September 2016 - 108
Signal Processing - September 2016 - 109
Signal Processing - September 2016 - 110
Signal Processing - September 2016 - 111
Signal Processing - September 2016 - 112
Signal Processing - September 2016 - 113
Signal Processing - September 2016 - 114
Signal Processing - September 2016 - 115
Signal Processing - September 2016 - 116
Signal Processing - September 2016 - 117
Signal Processing - September 2016 - 118
Signal Processing - September 2016 - 119
Signal Processing - September 2016 - 120
Signal Processing - September 2016 - 121
Signal Processing - September 2016 - 122
Signal Processing - September 2016 - 123
Signal Processing - September 2016 - 124
Signal Processing - September 2016 - 125
Signal Processing - September 2016 - 126
Signal Processing - September 2016 - 127
Signal Processing - September 2016 - 128
Signal Processing - September 2016 - 129
Signal Processing - September 2016 - 130
Signal Processing - September 2016 - 131
Signal Processing - September 2016 - 132
Signal Processing - September 2016 - 133
Signal Processing - September 2016 - 134
Signal Processing - September 2016 - 135
Signal Processing - September 2016 - 136
Signal Processing - September 2016 - 137
Signal Processing - September 2016 - 138
Signal Processing - September 2016 - 139
Signal Processing - September 2016 - 140
Signal Processing - September 2016 - 141
Signal Processing - September 2016 - 142
Signal Processing - September 2016 - 143
Signal Processing - September 2016 - 144
Signal Processing - September 2016 - 145
Signal Processing - September 2016 - 146
Signal Processing - September 2016 - 147
Signal Processing - September 2016 - 148
Signal Processing - September 2016 - 149
Signal Processing - September 2016 - 150
Signal Processing - September 2016 - 151
Signal Processing - September 2016 - 152
Signal Processing - September 2016 - 153
Signal Processing - September 2016 - 154
Signal Processing - September 2016 - 155
Signal Processing - September 2016 - 156
Signal Processing - September 2016 - 157
Signal Processing - September 2016 - 158
Signal Processing - September 2016 - 159
Signal Processing - September 2016 - 160
Signal Processing - September 2016 - 161
Signal Processing - September 2016 - 162
Signal Processing - September 2016 - 163
Signal Processing - September 2016 - 164
Signal Processing - September 2016 - 165
Signal Processing - September 2016 - 166
Signal Processing - September 2016 - 167
Signal Processing - September 2016 - 168
Signal Processing - September 2016 - 169
Signal Processing - September 2016 - 170
Signal Processing - September 2016 - 171
Signal Processing - September 2016 - 172
Signal Processing - September 2016 - 173
Signal Processing - September 2016 - 174
Signal Processing - September 2016 - 175
Signal Processing - September 2016 - 176
Signal Processing - September 2016 - Cover3
Signal Processing - September 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com