Signal Processing - September 2017 - 128
Table 1. The teams that participated in the 2014 and 2015 Microsoft Indoor Localization Competitions. Teams in each category
are listed in order of the localization accuracy they achieved (highest to lowest) that year. (continued )
Infrastructure free
Team
Team's Affiliation
Country
Technical Approach
Global
Rank
Maróti et al. [72]
University of Szeged
Hungary
Radio interferometry
16
Lin et al. [73]
National Chiao-Tung University
Taiwan
Mobile device encounterings
17
Nikodem et al. [53]
Wroclaw University of Science and
Technology
Poland
2.4-GHz ToF
19
Deora and Krishnamachari [74]
University of Southern California
United States
Zigbee beacons
20
Kuo et al. [47]
University of Michigan
United States
Visible light
21
Mirshekari et al. [75]
Carnegie Mellon Unversity
United States
Structural vibration
22
Sánchez et al. [45]
European Commission, Joint Research
Center
Italy
Lidar
1
SPIRIT Navigation [76]
SPIRIT Navigation
Russia
Wi-Fi + magnetic + IMU
fingerprinting
10
Guimarães et al. [39]
Fraunhofer Research Center
Portugal
Wi-Fi + magnetic + IMU
fingerprinting
11
Zou et al. [60]
Nanyang Technological University/
University of California, Berkeley
Singapore/United
States
Wi-Fi + IMU fingerprinting
13
Wu et al. [77]
University of Windsor
Canada
Wi-Fi + IMU fingerprinting
15
Herrera et al. [78]
Navix
Mexico
Wi-Fi + IMU fingerprinting
18
Ghose et al. [64]
Tata
India
Wi-Fi + IMU fingerprinting
23
localization, fingerprints need to be carefully engineered so that
even nearby locations have sufficiently different fingerprints. To do
so, researchers have exploited more physical layer signal quality
indicators that go beyond RSSI [i.e., signal-to-noise ratio (SNR),
frequency offset, and more] and have also expanded fingerprints
to include widely available wireless signals that go beyond WiFi, such as FM and TV signals [11]-[18] (Figure 1).
The major challenges in implementing wireless fingerprinting are the overhead of the manual process for building
the fingerprint database and the inherent noise in the wireless
signals that can affect localization accuracy. Wireless signals
change over time, and they are affected by the number of people in the indoor environment as well as by the placement of
big objects, such as furniture. In addition, access points disappear or appear continuously, affecting the stability of wireless fingerprints.
An alternative to wireless fingerprinting is pedestrian dead
reckoning (PDR) [39]. PDR leverages the on-board sensors of
mobile devices, such as accelerometers, gyro, and compass,
to count the steps and turns of the person holding the device.
Assuming the person entered the indoor environment at a
known point (i.e., entrance to a shopping mall), the number of
steps and turns the person took can be used to estimate his or
her location in the space at any given time. If the map of the
indoor environment is available, PDR-based techniques can
achieve higher accuracy by constraining human movement
based on the map.
The major challenge with PDR is that sensor data tend
to drift over time. Even though initially very accurate, as
128
the person continuously moves, the noise in the inertial
sensors accumulates over time, impacting the overall localization accuracy. More recently, PDR techniques have been
used in a complementary way to wireless fingerprinting.
The inertial sensor data is used to filter out noise in the wireless fingerprints and vice versa, leading to more reliable
indoor localization.
Hardware-based approaches to indoor location
Ranging primitives
Hardware-based approaches rely on ranging, the process of
estimating the distance between two devices (i.e., between
the device that needs to be localized and one of the custom
hardware devices that have been preinstalled in known locations). Figure 2 shows the three fundamental techniques
used for estimating this distance. In all cases, distance estimation is achieved by accurately timestamping the transmission and reception of wireless signals exchanged
between the participating devices. To accurately timestamp
these signals, all participating devices need to be tightly
time synchronized.
The most common way of estimating the distance between
two devices [Tx and receivers (Rx) in Figure 2] is for these
devices to measure the ToF of a single wireless transmission.
By timestamping the wireless signal at the time of tranmission
(t1 in Figure 2) and at the time of reception (t2 in Figure 2), one
can measure the ToF, the time it takes the wireless signal to
travel from one device to the other. If the speed at which the
IEEE SIGNAL PROCESSING MAGAZINE
|
September 2017
|
Table of Contents for the Digital Edition of Signal Processing - September 2017
Signal Processing - September 2017 - Cover1
Signal Processing - September 2017 - Cover2
Signal Processing - September 2017 - 1
Signal Processing - September 2017 - 2
Signal Processing - September 2017 - 3
Signal Processing - September 2017 - 4
Signal Processing - September 2017 - 5
Signal Processing - September 2017 - 6
Signal Processing - September 2017 - 7
Signal Processing - September 2017 - 8
Signal Processing - September 2017 - 9
Signal Processing - September 2017 - 10
Signal Processing - September 2017 - 11
Signal Processing - September 2017 - 12
Signal Processing - September 2017 - 13
Signal Processing - September 2017 - 14
Signal Processing - September 2017 - 15
Signal Processing - September 2017 - 16
Signal Processing - September 2017 - 17
Signal Processing - September 2017 - 18
Signal Processing - September 2017 - 19
Signal Processing - September 2017 - 20
Signal Processing - September 2017 - 21
Signal Processing - September 2017 - 22
Signal Processing - September 2017 - 23
Signal Processing - September 2017 - 24
Signal Processing - September 2017 - 25
Signal Processing - September 2017 - 26
Signal Processing - September 2017 - 27
Signal Processing - September 2017 - 28
Signal Processing - September 2017 - 29
Signal Processing - September 2017 - 30
Signal Processing - September 2017 - 31
Signal Processing - September 2017 - 32
Signal Processing - September 2017 - 33
Signal Processing - September 2017 - 34
Signal Processing - September 2017 - 35
Signal Processing - September 2017 - 36
Signal Processing - September 2017 - 37
Signal Processing - September 2017 - 38
Signal Processing - September 2017 - 39
Signal Processing - September 2017 - 40
Signal Processing - September 2017 - 41
Signal Processing - September 2017 - 42
Signal Processing - September 2017 - 43
Signal Processing - September 2017 - 44
Signal Processing - September 2017 - 45
Signal Processing - September 2017 - 46
Signal Processing - September 2017 - 47
Signal Processing - September 2017 - 48
Signal Processing - September 2017 - 49
Signal Processing - September 2017 - 50
Signal Processing - September 2017 - 51
Signal Processing - September 2017 - 52
Signal Processing - September 2017 - 53
Signal Processing - September 2017 - 54
Signal Processing - September 2017 - 55
Signal Processing - September 2017 - 56
Signal Processing - September 2017 - 57
Signal Processing - September 2017 - 58
Signal Processing - September 2017 - 59
Signal Processing - September 2017 - 60
Signal Processing - September 2017 - 61
Signal Processing - September 2017 - 62
Signal Processing - September 2017 - 63
Signal Processing - September 2017 - 64
Signal Processing - September 2017 - 65
Signal Processing - September 2017 - 66
Signal Processing - September 2017 - 67
Signal Processing - September 2017 - 68
Signal Processing - September 2017 - 69
Signal Processing - September 2017 - 70
Signal Processing - September 2017 - 71
Signal Processing - September 2017 - 72
Signal Processing - September 2017 - 73
Signal Processing - September 2017 - 74
Signal Processing - September 2017 - 75
Signal Processing - September 2017 - 76
Signal Processing - September 2017 - 77
Signal Processing - September 2017 - 78
Signal Processing - September 2017 - 79
Signal Processing - September 2017 - 80
Signal Processing - September 2017 - 81
Signal Processing - September 2017 - 82
Signal Processing - September 2017 - 83
Signal Processing - September 2017 - 84
Signal Processing - September 2017 - 85
Signal Processing - September 2017 - 86
Signal Processing - September 2017 - 87
Signal Processing - September 2017 - 88
Signal Processing - September 2017 - 89
Signal Processing - September 2017 - 90
Signal Processing - September 2017 - 91
Signal Processing - September 2017 - 92
Signal Processing - September 2017 - 93
Signal Processing - September 2017 - 94
Signal Processing - September 2017 - 95
Signal Processing - September 2017 - 96
Signal Processing - September 2017 - 97
Signal Processing - September 2017 - 98
Signal Processing - September 2017 - 99
Signal Processing - September 2017 - 100
Signal Processing - September 2017 - 101
Signal Processing - September 2017 - 102
Signal Processing - September 2017 - 103
Signal Processing - September 2017 - 104
Signal Processing - September 2017 - 105
Signal Processing - September 2017 - 106
Signal Processing - September 2017 - 107
Signal Processing - September 2017 - 108
Signal Processing - September 2017 - 109
Signal Processing - September 2017 - 110
Signal Processing - September 2017 - 111
Signal Processing - September 2017 - 112
Signal Processing - September 2017 - 113
Signal Processing - September 2017 - 114
Signal Processing - September 2017 - 115
Signal Processing - September 2017 - 116
Signal Processing - September 2017 - 117
Signal Processing - September 2017 - 118
Signal Processing - September 2017 - 119
Signal Processing - September 2017 - 120
Signal Processing - September 2017 - 121
Signal Processing - September 2017 - 122
Signal Processing - September 2017 - 123
Signal Processing - September 2017 - 124
Signal Processing - September 2017 - 125
Signal Processing - September 2017 - 126
Signal Processing - September 2017 - 127
Signal Processing - September 2017 - 128
Signal Processing - September 2017 - 129
Signal Processing - September 2017 - 130
Signal Processing - September 2017 - 131
Signal Processing - September 2017 - 132
Signal Processing - September 2017 - 133
Signal Processing - September 2017 - 134
Signal Processing - September 2017 - 135
Signal Processing - September 2017 - 136
Signal Processing - September 2017 - 137
Signal Processing - September 2017 - 138
Signal Processing - September 2017 - 139
Signal Processing - September 2017 - 140
Signal Processing - September 2017 - 141
Signal Processing - September 2017 - 142
Signal Processing - September 2017 - 143
Signal Processing - September 2017 - 144
Signal Processing - September 2017 - 145
Signal Processing - September 2017 - 146
Signal Processing - September 2017 - 147
Signal Processing - September 2017 - 148
Signal Processing - September 2017 - 149
Signal Processing - September 2017 - 150
Signal Processing - September 2017 - 151
Signal Processing - September 2017 - 152
Signal Processing - September 2017 - 153
Signal Processing - September 2017 - 154
Signal Processing - September 2017 - 155
Signal Processing - September 2017 - 156
Signal Processing - September 2017 - 157
Signal Processing - September 2017 - 158
Signal Processing - September 2017 - 159
Signal Processing - September 2017 - 160
Signal Processing - September 2017 - 161
Signal Processing - September 2017 - 162
Signal Processing - September 2017 - 163
Signal Processing - September 2017 - 164
Signal Processing - September 2017 - 165
Signal Processing - September 2017 - 166
Signal Processing - September 2017 - 167
Signal Processing - September 2017 - 168
Signal Processing - September 2017 - 169
Signal Processing - September 2017 - 170
Signal Processing - September 2017 - 171
Signal Processing - September 2017 - 172
Signal Processing - September 2017 - 173
Signal Processing - September 2017 - 174
Signal Processing - September 2017 - 175
Signal Processing - September 2017 - 176
Signal Processing - September 2017 - 177
Signal Processing - September 2017 - 178
Signal Processing - September 2017 - 179
Signal Processing - September 2017 - 180
Signal Processing - September 2017 - 181
Signal Processing - September 2017 - 182
Signal Processing - September 2017 - 183
Signal Processing - September 2017 - 184
Signal Processing - September 2017 - 185
Signal Processing - September 2017 - 186
Signal Processing - September 2017 - 187
Signal Processing - September 2017 - 188
Signal Processing - September 2017 - 189
Signal Processing - September 2017 - 190
Signal Processing - September 2017 - 191
Signal Processing - September 2017 - 192
Signal Processing - September 2017 - 193
Signal Processing - September 2017 - 194
Signal Processing - September 2017 - 195
Signal Processing - September 2017 - 196
Signal Processing - September 2017 - Cover3
Signal Processing - September 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com