Signal Processing - September 2017 - 143

41.6
41.7
41.8
41.9
42

Channel Gain

are simple and do not necessarily require transmit power
ers (also known as tones or frequency bins) [16]. As a result,
optimization. Even the matrix inversion required for linDMT effectively transforms a broadband frequency-selective
ear ZF crosstalk cancelation can be avoided through power
channel into many frequency-flat narrow-band channels, as
series expansion of the MIMO channel [12].
shown in Figure 1.
Simple least-mean-square (LMS)-based
The G.fast system has a wider tone
The recent xDSL standards
adaptive algorithms are very efficient and
width-exactly
12 times wider than asymuse a discrete multitone
converge quite rapidly for the diagonally
metric DSL (ADSL)/VDSL-to cover the
technique, which
dominant VDSL channels [13], [14].
higher bandwidth without increasing the
divides the transmission
At high G.fast frequencies, the crosstalk
number of tones. In the ADSL system,
frequency band into
K = 256 tones (over 2.2 MHz), VDSL conis significant, and the channel matrices are
no longer diagonal dominant. Thus, many
tains K = 4,096 tones (over 30  MHz), the
smaller subcarriers.
VDSL algorithms either fail or converge very
G.fast 106-MHz system has K = 2,048
slowly. Moreover, the adaptive schemes of the VDSL system
tones, and the G.fast 212-MHz profile increases the number of
are either not suitable or are no longer applicable in the TDDtones to K = 4,096. The DMT symbol also contains a cyclic
based G.fast system.
prefix (CP) that allows a tone separation of one symbol duration without any interference between tones, as long as the CP
Wireline discrete multitone technology
is longer than the channel memory (see, for example, [16]). The
Like any communication system, the performance of DSL
G.fast system has a typical CP length of L = 320 samples.
systems is limited by several types of impairments. In the folThe G.fast has a higher sampling frequency than the
lowing, we discuss the main ones and describe both tradiVDSL  system, which operates at 70 million samples per
tional and novel techniques implemented by DSL systems
second (Msps). The sampling frequency of the G.fast 106to address them. We also discuss key distinguishing features
MHz profile is 212 Msps. To convert K data symbols into a
of G.fast technology and show how it differs from its predereal signal, 2K point inverse fast Fourier transform (IFFT)
cessor technologies.
is used. The resulting bandwidth is 106 MHz, and the tone
width is 51.75. Considering the CP, the resulting symbol rate
Thermal noise
is 48 KHz (exactly 12 times faster than ADSL/VDSL). The
All communication systems are inherently limited by thermal
G.fast 212-MHz system has the same symbol rate but a much
noise caused by the random movement of electrons in the syshigher sampling frequency rate (more than 400 Msps). A
tem. This additive noise is generally modeled as a random
typical DMT block diagram with G.fast parameters is shown
Gaussian signal that is independent of the transmit signal. The
in Figure 2.
effect of thermal noise cannot be completely avoided, and it
Another important advantage of the DMT is the ability to
sets an upper limit on communication performance, which is
use a different modulation at each tone. Thus, tones with a low
known as the channel capacity [15]. Attaining the channel
SNR will use small constellations, such as quadrature phasecapacity requires the implementation of powerful error corshift keying with two bits per tone. Tones with high SNRs
rection codes. Legacy DSL systems employ the relatively
simple Reed-Solomon (RS) codes as an outer code and trellis-coded modulation (TCM) as an inner code, with an inter0.9
leaver between them [5]. The combined RS-TCM coding
0.8
scheme was also chosen for the G.fast 106-MHz standard.
0.7
Capacity-approaching low-density parity-check (LDPC)
0.6
codes have also been proposed for the G.fast system. But the
0.5
design and implementation of an LDPC code with flexible
0.15
0.4
0.1
coding and modulation that can operate at the G.fast data rates
0.05
0.3
is an open research challenge. In most scenarios, however,
Zoomed
0
0.2
thermal noise is not the main limiting factor, and other impair0.1
ments must be considered.
0

Intersymbol interference and discrete
multitone modulation
Over wide bandwidths, the telephone channel is frequency
selective and exhibits frequency-dependent attenuation and
delay. This causes severe intersymbol interference (ISI),
where the communication symbols are prolonged and overlap
each other. To overcome this problem, the recent xDSL standards use a discrete multitone (DMT) technique, which
divides the transmission frequency band into smaller subcarri-

10

20

30

40 50 60 70
Frequency (MHz)

80

90

100

Frequency-Selective Channel
Frequency-Flat Subchannel

FIGURE 1. The frequency selectivity of the DSL channel is illustrated using
the channel gain of a 100-m CAD55 cable simulated for the G.fast 106-MHz
profile [3]. The figure shows how the use of 2,048 narrow-band tones of
51.75 KHz results in an almost frequency-flat channel at each tone.

IEEE SIGNAL PROCESSING MAGAZINE

|

September 2017

|

143



Table of Contents for the Digital Edition of Signal Processing - September 2017

Signal Processing - September 2017 - Cover1
Signal Processing - September 2017 - Cover2
Signal Processing - September 2017 - 1
Signal Processing - September 2017 - 2
Signal Processing - September 2017 - 3
Signal Processing - September 2017 - 4
Signal Processing - September 2017 - 5
Signal Processing - September 2017 - 6
Signal Processing - September 2017 - 7
Signal Processing - September 2017 - 8
Signal Processing - September 2017 - 9
Signal Processing - September 2017 - 10
Signal Processing - September 2017 - 11
Signal Processing - September 2017 - 12
Signal Processing - September 2017 - 13
Signal Processing - September 2017 - 14
Signal Processing - September 2017 - 15
Signal Processing - September 2017 - 16
Signal Processing - September 2017 - 17
Signal Processing - September 2017 - 18
Signal Processing - September 2017 - 19
Signal Processing - September 2017 - 20
Signal Processing - September 2017 - 21
Signal Processing - September 2017 - 22
Signal Processing - September 2017 - 23
Signal Processing - September 2017 - 24
Signal Processing - September 2017 - 25
Signal Processing - September 2017 - 26
Signal Processing - September 2017 - 27
Signal Processing - September 2017 - 28
Signal Processing - September 2017 - 29
Signal Processing - September 2017 - 30
Signal Processing - September 2017 - 31
Signal Processing - September 2017 - 32
Signal Processing - September 2017 - 33
Signal Processing - September 2017 - 34
Signal Processing - September 2017 - 35
Signal Processing - September 2017 - 36
Signal Processing - September 2017 - 37
Signal Processing - September 2017 - 38
Signal Processing - September 2017 - 39
Signal Processing - September 2017 - 40
Signal Processing - September 2017 - 41
Signal Processing - September 2017 - 42
Signal Processing - September 2017 - 43
Signal Processing - September 2017 - 44
Signal Processing - September 2017 - 45
Signal Processing - September 2017 - 46
Signal Processing - September 2017 - 47
Signal Processing - September 2017 - 48
Signal Processing - September 2017 - 49
Signal Processing - September 2017 - 50
Signal Processing - September 2017 - 51
Signal Processing - September 2017 - 52
Signal Processing - September 2017 - 53
Signal Processing - September 2017 - 54
Signal Processing - September 2017 - 55
Signal Processing - September 2017 - 56
Signal Processing - September 2017 - 57
Signal Processing - September 2017 - 58
Signal Processing - September 2017 - 59
Signal Processing - September 2017 - 60
Signal Processing - September 2017 - 61
Signal Processing - September 2017 - 62
Signal Processing - September 2017 - 63
Signal Processing - September 2017 - 64
Signal Processing - September 2017 - 65
Signal Processing - September 2017 - 66
Signal Processing - September 2017 - 67
Signal Processing - September 2017 - 68
Signal Processing - September 2017 - 69
Signal Processing - September 2017 - 70
Signal Processing - September 2017 - 71
Signal Processing - September 2017 - 72
Signal Processing - September 2017 - 73
Signal Processing - September 2017 - 74
Signal Processing - September 2017 - 75
Signal Processing - September 2017 - 76
Signal Processing - September 2017 - 77
Signal Processing - September 2017 - 78
Signal Processing - September 2017 - 79
Signal Processing - September 2017 - 80
Signal Processing - September 2017 - 81
Signal Processing - September 2017 - 82
Signal Processing - September 2017 - 83
Signal Processing - September 2017 - 84
Signal Processing - September 2017 - 85
Signal Processing - September 2017 - 86
Signal Processing - September 2017 - 87
Signal Processing - September 2017 - 88
Signal Processing - September 2017 - 89
Signal Processing - September 2017 - 90
Signal Processing - September 2017 - 91
Signal Processing - September 2017 - 92
Signal Processing - September 2017 - 93
Signal Processing - September 2017 - 94
Signal Processing - September 2017 - 95
Signal Processing - September 2017 - 96
Signal Processing - September 2017 - 97
Signal Processing - September 2017 - 98
Signal Processing - September 2017 - 99
Signal Processing - September 2017 - 100
Signal Processing - September 2017 - 101
Signal Processing - September 2017 - 102
Signal Processing - September 2017 - 103
Signal Processing - September 2017 - 104
Signal Processing - September 2017 - 105
Signal Processing - September 2017 - 106
Signal Processing - September 2017 - 107
Signal Processing - September 2017 - 108
Signal Processing - September 2017 - 109
Signal Processing - September 2017 - 110
Signal Processing - September 2017 - 111
Signal Processing - September 2017 - 112
Signal Processing - September 2017 - 113
Signal Processing - September 2017 - 114
Signal Processing - September 2017 - 115
Signal Processing - September 2017 - 116
Signal Processing - September 2017 - 117
Signal Processing - September 2017 - 118
Signal Processing - September 2017 - 119
Signal Processing - September 2017 - 120
Signal Processing - September 2017 - 121
Signal Processing - September 2017 - 122
Signal Processing - September 2017 - 123
Signal Processing - September 2017 - 124
Signal Processing - September 2017 - 125
Signal Processing - September 2017 - 126
Signal Processing - September 2017 - 127
Signal Processing - September 2017 - 128
Signal Processing - September 2017 - 129
Signal Processing - September 2017 - 130
Signal Processing - September 2017 - 131
Signal Processing - September 2017 - 132
Signal Processing - September 2017 - 133
Signal Processing - September 2017 - 134
Signal Processing - September 2017 - 135
Signal Processing - September 2017 - 136
Signal Processing - September 2017 - 137
Signal Processing - September 2017 - 138
Signal Processing - September 2017 - 139
Signal Processing - September 2017 - 140
Signal Processing - September 2017 - 141
Signal Processing - September 2017 - 142
Signal Processing - September 2017 - 143
Signal Processing - September 2017 - 144
Signal Processing - September 2017 - 145
Signal Processing - September 2017 - 146
Signal Processing - September 2017 - 147
Signal Processing - September 2017 - 148
Signal Processing - September 2017 - 149
Signal Processing - September 2017 - 150
Signal Processing - September 2017 - 151
Signal Processing - September 2017 - 152
Signal Processing - September 2017 - 153
Signal Processing - September 2017 - 154
Signal Processing - September 2017 - 155
Signal Processing - September 2017 - 156
Signal Processing - September 2017 - 157
Signal Processing - September 2017 - 158
Signal Processing - September 2017 - 159
Signal Processing - September 2017 - 160
Signal Processing - September 2017 - 161
Signal Processing - September 2017 - 162
Signal Processing - September 2017 - 163
Signal Processing - September 2017 - 164
Signal Processing - September 2017 - 165
Signal Processing - September 2017 - 166
Signal Processing - September 2017 - 167
Signal Processing - September 2017 - 168
Signal Processing - September 2017 - 169
Signal Processing - September 2017 - 170
Signal Processing - September 2017 - 171
Signal Processing - September 2017 - 172
Signal Processing - September 2017 - 173
Signal Processing - September 2017 - 174
Signal Processing - September 2017 - 175
Signal Processing - September 2017 - 176
Signal Processing - September 2017 - 177
Signal Processing - September 2017 - 178
Signal Processing - September 2017 - 179
Signal Processing - September 2017 - 180
Signal Processing - September 2017 - 181
Signal Processing - September 2017 - 182
Signal Processing - September 2017 - 183
Signal Processing - September 2017 - 184
Signal Processing - September 2017 - 185
Signal Processing - September 2017 - 186
Signal Processing - September 2017 - 187
Signal Processing - September 2017 - 188
Signal Processing - September 2017 - 189
Signal Processing - September 2017 - 190
Signal Processing - September 2017 - 191
Signal Processing - September 2017 - 192
Signal Processing - September 2017 - 193
Signal Processing - September 2017 - 194
Signal Processing - September 2017 - 195
Signal Processing - September 2017 - 196
Signal Processing - September 2017 - Cover3
Signal Processing - September 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com