Signal Processing - November 2016 - 100
estimated in one stage can lead to a
and K is the number of moving targets.
Compared to the
degraded performance in the subsequent
As described previously, the dictionary
deterministic sparsitystages. In the discussed framework, the
A (c 1, ..., c K ) ! C P # KN is a n overcominducing framework,
signal estimation is conducted in a statisplete one. It is constructed by concatestatistical sparsity-based
tical manner, where the obtained statisnating K subdictionaries, where each
techniques provide
tics indicate the uncertainty in the signal
subdictionary is constructed by an LFM
estimation. Therefore, the estimation
matrix with chirp rate c i . In [54], a
new opportunities to
could be more accurate.
scaled Gaussian mixture distribution is
significantly improve the
By properly manipulating the statistical
used to model sparsity. Similar to the
performance of
sparsity models, a performance gain can
work covered in the "Statistical Sparsityradar imagery.
be obtained.
Based Autofocus Techniques in Radar
Imagery" section, statistical information
is utilized to estimate the error parameter E and the chirp
Future directions
rate c i, where the error propagation problem during iteraSince the statistical sparsity-based methods are quite attraction is reduced [47], [54].
tive, it would be most interesting to investigate the following
In Figure 10, the canonical Gotcha data set is used for
problems in the future.
validation, and an example of the Durango target image is
■ Computational complexity. The statistical sparsity-based
given to demonstrate the performance. Due to the movement
methods operate in an iterative manner, where the numof the target, the original image is substantially blurred, as
ber of iterations and the computational cost of each iteraobserved in Figure 10(a). After representing the received sigtion determine the total computational cost. Compared to
nal by the LVD, the , 1-norm regularization method and the
the conventional Fourier-based approach for radar
imaging, the computational complexity is much higher. It
conventional sparse Bayesian method are applied to obtain
is therefore imperative to develop fast algorithms that
the moving target images, as shown in Figure 10(b) and
could decrease the computational complexity or obtain
(c), respectively. The , 1-regularized method and the sparse
fast convergence. The fast algorithms would be particuBayesian method cannot properly focus the target image due
larly useful for many radar applications requiring realto the representation error in the LVD. In contrast, the statistime processing.
tical sparsity-based method with refinement leads to the best
imaging performance in terms of better concentration and
■ Motion compensation errors. In high-resolution radar
desirable noise suppression, as shown in Figure 10(d). The
imaging, a large CPI is required. Then the target movement
superior performance of the statistical sparsity-based methbecomes a problem as the radar line-of-sight dramatically
od is also evaluated quantitatively by the calculated entropy
changes. In such a scenario, even after carrying out coarse
and target-to-clutter ratio (TCR) as shown in Figure 10. In
motion compensation, RCM and phase error would still be
particular, the target image is focused within a 5 m # 5 m
present in the radar echoes. Then, the dictionary allowing
sparse representation would become more complicated,
area that is in accordance with the Durango truth with a size
where the proposed imaging algorithm should also be able
of 5 m # 2 m.
to correct RCM and phase errors. The main challenge is to
properly obtain the approximated solution in the presence
Summary and future directions
of a more complicated model. Toward this end, it would be
particularly suitable to exploit statistical sparsity to limit
Summary
error propagation. One possible way of coping with this
Sparsity-based techniques have been reviewed from a stachallenge is to encode priors on the error parameters to
tistical perspective, along with their recent advances in
properly regularize the solution space.
radar imagery. Various applications show that improved
performance can be obtained by adequately utilizing a sta■ Temporal correlation in SAR GMTIm. Conventionally,
tistical sparse model. The improvements obtained in the
most SAR GMTIm algorithms focus on image formareviewed applications were largely dependent on the foltion of the moving target at one particular time instant.
lowing core ingredients:
However, it is important to also monitor the movement
of the moving target. Since the target's motion and
■ Probabilistic modeling by incorporating flexible priors
imaging background are time-varying, simply generatin the signal is one of the most remarkable advantages
ing a single-frame image cannot provide time-varying
over deterministic approaches. The advantage of the stacharacteristics of the moving target. Therefore, it is nectistical framework is its flexibility. In this way, the foressary to develop temporal SAR GMTIm based on the
mulation could model a particular structure in a
statistical sparsity-based framework, which is a promisprobabilistic way and also allows for a fitting of the
ing research direction in SAR GMTIm technology. In
likelihood.
fact, Sandia Laboratory has successfully realized Video■ The utilization of uncertainty information during
SAR GMTIm, where the processed results have been
parameter estimation is important for a performance
released on their official website. In particular, the
gain. Particularly, in conventional approaches, the error
100
IEEE SIgnal ProcESSIng MagazInE
|
November 2016
|
Table of Contents for the Digital Edition of Signal Processing - November 2016
Signal Processing - November 2016 - Cover1
Signal Processing - November 2016 - Cover2
Signal Processing - November 2016 - 1
Signal Processing - November 2016 - 2
Signal Processing - November 2016 - 3
Signal Processing - November 2016 - 4
Signal Processing - November 2016 - 5
Signal Processing - November 2016 - 6
Signal Processing - November 2016 - 7
Signal Processing - November 2016 - 8
Signal Processing - November 2016 - 9
Signal Processing - November 2016 - 10
Signal Processing - November 2016 - 11
Signal Processing - November 2016 - 12
Signal Processing - November 2016 - 13
Signal Processing - November 2016 - 14
Signal Processing - November 2016 - 15
Signal Processing - November 2016 - 16
Signal Processing - November 2016 - 17
Signal Processing - November 2016 - 18
Signal Processing - November 2016 - 19
Signal Processing - November 2016 - 20
Signal Processing - November 2016 - 21
Signal Processing - November 2016 - 22
Signal Processing - November 2016 - 23
Signal Processing - November 2016 - 24
Signal Processing - November 2016 - 25
Signal Processing - November 2016 - 26
Signal Processing - November 2016 - 27
Signal Processing - November 2016 - 28
Signal Processing - November 2016 - 29
Signal Processing - November 2016 - 30
Signal Processing - November 2016 - 31
Signal Processing - November 2016 - 32
Signal Processing - November 2016 - 33
Signal Processing - November 2016 - 34
Signal Processing - November 2016 - 35
Signal Processing - November 2016 - 36
Signal Processing - November 2016 - 37
Signal Processing - November 2016 - 38
Signal Processing - November 2016 - 39
Signal Processing - November 2016 - 40
Signal Processing - November 2016 - 41
Signal Processing - November 2016 - 42
Signal Processing - November 2016 - 43
Signal Processing - November 2016 - 44
Signal Processing - November 2016 - 45
Signal Processing - November 2016 - 46
Signal Processing - November 2016 - 47
Signal Processing - November 2016 - 48
Signal Processing - November 2016 - 49
Signal Processing - November 2016 - 50
Signal Processing - November 2016 - 51
Signal Processing - November 2016 - 52
Signal Processing - November 2016 - 53
Signal Processing - November 2016 - 54
Signal Processing - November 2016 - 55
Signal Processing - November 2016 - 56
Signal Processing - November 2016 - 57
Signal Processing - November 2016 - 58
Signal Processing - November 2016 - 59
Signal Processing - November 2016 - 60
Signal Processing - November 2016 - 61
Signal Processing - November 2016 - 62
Signal Processing - November 2016 - 63
Signal Processing - November 2016 - 64
Signal Processing - November 2016 - 65
Signal Processing - November 2016 - 66
Signal Processing - November 2016 - 67
Signal Processing - November 2016 - 68
Signal Processing - November 2016 - 69
Signal Processing - November 2016 - 70
Signal Processing - November 2016 - 71
Signal Processing - November 2016 - 72
Signal Processing - November 2016 - 73
Signal Processing - November 2016 - 74
Signal Processing - November 2016 - 75
Signal Processing - November 2016 - 76
Signal Processing - November 2016 - 77
Signal Processing - November 2016 - 78
Signal Processing - November 2016 - 79
Signal Processing - November 2016 - 80
Signal Processing - November 2016 - 81
Signal Processing - November 2016 - 82
Signal Processing - November 2016 - 83
Signal Processing - November 2016 - 84
Signal Processing - November 2016 - 85
Signal Processing - November 2016 - 86
Signal Processing - November 2016 - 87
Signal Processing - November 2016 - 88
Signal Processing - November 2016 - 89
Signal Processing - November 2016 - 90
Signal Processing - November 2016 - 91
Signal Processing - November 2016 - 92
Signal Processing - November 2016 - 93
Signal Processing - November 2016 - 94
Signal Processing - November 2016 - 95
Signal Processing - November 2016 - 96
Signal Processing - November 2016 - 97
Signal Processing - November 2016 - 98
Signal Processing - November 2016 - 99
Signal Processing - November 2016 - 100
Signal Processing - November 2016 - 101
Signal Processing - November 2016 - 102
Signal Processing - November 2016 - 103
Signal Processing - November 2016 - 104
Signal Processing - November 2016 - 105
Signal Processing - November 2016 - 106
Signal Processing - November 2016 - 107
Signal Processing - November 2016 - 108
Signal Processing - November 2016 - 109
Signal Processing - November 2016 - 110
Signal Processing - November 2016 - 111
Signal Processing - November 2016 - 112
Signal Processing - November 2016 - 113
Signal Processing - November 2016 - 114
Signal Processing - November 2016 - 115
Signal Processing - November 2016 - 116
Signal Processing - November 2016 - 117
Signal Processing - November 2016 - 118
Signal Processing - November 2016 - 119
Signal Processing - November 2016 - 120
Signal Processing - November 2016 - 121
Signal Processing - November 2016 - 122
Signal Processing - November 2016 - 123
Signal Processing - November 2016 - 124
Signal Processing - November 2016 - 125
Signal Processing - November 2016 - 126
Signal Processing - November 2016 - 127
Signal Processing - November 2016 - 128
Signal Processing - November 2016 - 129
Signal Processing - November 2016 - 130
Signal Processing - November 2016 - 131
Signal Processing - November 2016 - 132
Signal Processing - November 2016 - 133
Signal Processing - November 2016 - 134
Signal Processing - November 2016 - 135
Signal Processing - November 2016 - 136
Signal Processing - November 2016 - 137
Signal Processing - November 2016 - 138
Signal Processing - November 2016 - 139
Signal Processing - November 2016 - 140
Signal Processing - November 2016 - 141
Signal Processing - November 2016 - 142
Signal Processing - November 2016 - 143
Signal Processing - November 2016 - 144
Signal Processing - November 2016 - 145
Signal Processing - November 2016 - 146
Signal Processing - November 2016 - 147
Signal Processing - November 2016 - 148
Signal Processing - November 2016 - Cover3
Signal Processing - November 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com