Signal Processing - November 2016 - 77
the coordination region (4f). The problem captures the basic
requirements: safety through (4e), liveness through (4f), and
performance through the objective function. Problem 1 can
be conveniently reformulated in a discrete time domain by
discretizing the systems dynamics (4b). Furthermore, to
solve a finite dimensional problem, receding horizon control (RHC) or model predictive control (MPC) schemes can
be used [7], where a finite time optimal control problem is
solved every sampling time instant. In particular, as explained
in Figure 3, RHC seeks future input and state trajectories at
every sampling time instant over a finite time horizon, so
as to minimize the cost function, subject to the constraints.
The first element of the computed control input sequence is
applied to the system, and, at the next time step, the problem
is formulated and solved over a shifted time horizon. This
RHC approach also allows us to account for the future, but by
only committing the control action for the current time, we
are able cope with limited disturbances (e.g., due to imperfect
sensing or communication). This is important, as we will see
in the next section.
Challenges in solving the coordination problem
Although finite dimensional, solving problem 1 in a receding horizon framework is extremely challenging, not only
from the control perspective, but also due to imperfect communications as well as uncertainties induced by the sensors.
While all these challenges are interrelated, we break them
down as follows.
Control challenges
The main control-related challenges involve, first, the ability to
compute good, feasible control actions, and, second, the ability
to guarantee that the closed-loop system has certain desired
properties. Regarding the former, note that the mathematical
problem of finding the actions of N vehicles that allow them
to pass the coordination zone without colliding is inherently
a combinatorial problem. For a given initial configuration, a
multitude of feasible temporal crossing orders (i.e., different
orders in which one vehicle passes a coordination zone before
another) might exist, and the optimal ordering can only be
found by a structured exploration of the different alternatives.
It is therefore no surprise that even the problem of finding a
feasible solution to (4) is NP-hard in general [8]. Exact solutions to the OCP are therefore intractable for relevant problem sizes, and either heuristics or approximations must be
employed. Regarding the properties of closed-loop control,
there are several challenges. For instance, given the severity
of constraint violations in the OCP, any controller needs to
ensure persistent feasibility. If satisfied, this property ensures
that any action taken does not put the system in a state from
which no feasible actions exists, i.e., that no vehicle is ever
put in a state from which a collision is inevitable. The closedloop controller must also ensure stability, e.g., to make certain
that the crossing order does not change every time the solution
is recomputed. Additionally, the aforementioned issues are
linked, as the computational challenges of the mathematical
Prediction Horizon
Output Reference
Measured Output
Predicted Output
Previous Inputs
Optimal Input at k
Optimal
Input at k + 1
Past
k k+1
Future
k+N
Figure 3. An illustration of an RCH scheme. The sketch depicts how, in
an RCH algorithm, a present decision is made based on the current state
of the system and its predicted future behavior.
coordination problem, for instance, might promote distributed solutions. In that case, the closed-loop controller needs
to guarantee the aforementioned properties while the solution
is obtained iteratively and possibly asynchronously over the
wireless vehicular network.
Communications challenges
Irrespective of how the OCP is solved, information exchange
is required between the involved entities (e.g., vehicles and
possibly dedicated infrastructure). First and foremost, this
includes the information necessary to formulate the OCP,
e.g., the models of vehicle dynamics, road geometry, state
measurements, and static and dynamic map information. In
addition, it also includes information required to solve it,
e.g., internal messaging in a distributed, iterative algorithm.
Communication between entities will be greatly affected by
the impairments associated with wireless channels, including the inherent randomness and correlation of the channel, interference due to simultaneous transmissions, and a
limited communication range. In combination with limited
communication resources (bandwidth, power), this results
in packet drops and random latencies in packet arrivals. For
automobile applications, it was pointed out that the current
standards for V2V and V2I communication cannot ensure
time-critical message dissemination in dense scenarios [9].
In general, it is desired to keep the communication load low,
as wireless channel congestion is envisioned to be one of the
major challenges related to vehicular networks [10], [11].
Overall, the communication subsystem forms a bottleneck
for the OCP, related both to its formulation and the means by
which it is solved.
Sensing challenges
The vehicles' own perception of their current locations and
the positions of surrounding vehicles is fundamentally uncertain. Both are based on observations from sensors
such as cameras, radar, lidar, the global navigation satellite system (GNSS), and inertial navigation sensors, which
deliver observations that are corrupted by noise and clutter
IEEE SIgnal ProcESSIng MagazInE
|
November 2016
|
77
Table of Contents for the Digital Edition of Signal Processing - November 2016
Signal Processing - November 2016 - Cover1
Signal Processing - November 2016 - Cover2
Signal Processing - November 2016 - 1
Signal Processing - November 2016 - 2
Signal Processing - November 2016 - 3
Signal Processing - November 2016 - 4
Signal Processing - November 2016 - 5
Signal Processing - November 2016 - 6
Signal Processing - November 2016 - 7
Signal Processing - November 2016 - 8
Signal Processing - November 2016 - 9
Signal Processing - November 2016 - 10
Signal Processing - November 2016 - 11
Signal Processing - November 2016 - 12
Signal Processing - November 2016 - 13
Signal Processing - November 2016 - 14
Signal Processing - November 2016 - 15
Signal Processing - November 2016 - 16
Signal Processing - November 2016 - 17
Signal Processing - November 2016 - 18
Signal Processing - November 2016 - 19
Signal Processing - November 2016 - 20
Signal Processing - November 2016 - 21
Signal Processing - November 2016 - 22
Signal Processing - November 2016 - 23
Signal Processing - November 2016 - 24
Signal Processing - November 2016 - 25
Signal Processing - November 2016 - 26
Signal Processing - November 2016 - 27
Signal Processing - November 2016 - 28
Signal Processing - November 2016 - 29
Signal Processing - November 2016 - 30
Signal Processing - November 2016 - 31
Signal Processing - November 2016 - 32
Signal Processing - November 2016 - 33
Signal Processing - November 2016 - 34
Signal Processing - November 2016 - 35
Signal Processing - November 2016 - 36
Signal Processing - November 2016 - 37
Signal Processing - November 2016 - 38
Signal Processing - November 2016 - 39
Signal Processing - November 2016 - 40
Signal Processing - November 2016 - 41
Signal Processing - November 2016 - 42
Signal Processing - November 2016 - 43
Signal Processing - November 2016 - 44
Signal Processing - November 2016 - 45
Signal Processing - November 2016 - 46
Signal Processing - November 2016 - 47
Signal Processing - November 2016 - 48
Signal Processing - November 2016 - 49
Signal Processing - November 2016 - 50
Signal Processing - November 2016 - 51
Signal Processing - November 2016 - 52
Signal Processing - November 2016 - 53
Signal Processing - November 2016 - 54
Signal Processing - November 2016 - 55
Signal Processing - November 2016 - 56
Signal Processing - November 2016 - 57
Signal Processing - November 2016 - 58
Signal Processing - November 2016 - 59
Signal Processing - November 2016 - 60
Signal Processing - November 2016 - 61
Signal Processing - November 2016 - 62
Signal Processing - November 2016 - 63
Signal Processing - November 2016 - 64
Signal Processing - November 2016 - 65
Signal Processing - November 2016 - 66
Signal Processing - November 2016 - 67
Signal Processing - November 2016 - 68
Signal Processing - November 2016 - 69
Signal Processing - November 2016 - 70
Signal Processing - November 2016 - 71
Signal Processing - November 2016 - 72
Signal Processing - November 2016 - 73
Signal Processing - November 2016 - 74
Signal Processing - November 2016 - 75
Signal Processing - November 2016 - 76
Signal Processing - November 2016 - 77
Signal Processing - November 2016 - 78
Signal Processing - November 2016 - 79
Signal Processing - November 2016 - 80
Signal Processing - November 2016 - 81
Signal Processing - November 2016 - 82
Signal Processing - November 2016 - 83
Signal Processing - November 2016 - 84
Signal Processing - November 2016 - 85
Signal Processing - November 2016 - 86
Signal Processing - November 2016 - 87
Signal Processing - November 2016 - 88
Signal Processing - November 2016 - 89
Signal Processing - November 2016 - 90
Signal Processing - November 2016 - 91
Signal Processing - November 2016 - 92
Signal Processing - November 2016 - 93
Signal Processing - November 2016 - 94
Signal Processing - November 2016 - 95
Signal Processing - November 2016 - 96
Signal Processing - November 2016 - 97
Signal Processing - November 2016 - 98
Signal Processing - November 2016 - 99
Signal Processing - November 2016 - 100
Signal Processing - November 2016 - 101
Signal Processing - November 2016 - 102
Signal Processing - November 2016 - 103
Signal Processing - November 2016 - 104
Signal Processing - November 2016 - 105
Signal Processing - November 2016 - 106
Signal Processing - November 2016 - 107
Signal Processing - November 2016 - 108
Signal Processing - November 2016 - 109
Signal Processing - November 2016 - 110
Signal Processing - November 2016 - 111
Signal Processing - November 2016 - 112
Signal Processing - November 2016 - 113
Signal Processing - November 2016 - 114
Signal Processing - November 2016 - 115
Signal Processing - November 2016 - 116
Signal Processing - November 2016 - 117
Signal Processing - November 2016 - 118
Signal Processing - November 2016 - 119
Signal Processing - November 2016 - 120
Signal Processing - November 2016 - 121
Signal Processing - November 2016 - 122
Signal Processing - November 2016 - 123
Signal Processing - November 2016 - 124
Signal Processing - November 2016 - 125
Signal Processing - November 2016 - 126
Signal Processing - November 2016 - 127
Signal Processing - November 2016 - 128
Signal Processing - November 2016 - 129
Signal Processing - November 2016 - 130
Signal Processing - November 2016 - 131
Signal Processing - November 2016 - 132
Signal Processing - November 2016 - 133
Signal Processing - November 2016 - 134
Signal Processing - November 2016 - 135
Signal Processing - November 2016 - 136
Signal Processing - November 2016 - 137
Signal Processing - November 2016 - 138
Signal Processing - November 2016 - 139
Signal Processing - November 2016 - 140
Signal Processing - November 2016 - 141
Signal Processing - November 2016 - 142
Signal Processing - November 2016 - 143
Signal Processing - November 2016 - 144
Signal Processing - November 2016 - 145
Signal Processing - November 2016 - 146
Signal Processing - November 2016 - 147
Signal Processing - November 2016 - 148
Signal Processing - November 2016 - Cover3
Signal Processing - November 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com