Signal Processing - November 2016 - 92

Range Cell

Cross-Range Cell

(m, n)

(m, n)

(m, n)

Pattern

Pattern

Pattern

FIGURE 3. The first-order continuity patterns.

In summary, there are two important points to be noted
here. First, the success of statistical sparsity-based methods
depends on the proper selection of sampling patterns, which
is also the case for conventional sparsity-based methods. In
fact, statistical sparsity-based methods are less sensitive to
highly correlated measurement matrices induced by some
sampling patterns than sparsity regularized methods. A
detailed analysis can be found in [43] and the references
therein. Second, a tradeoff between design convenience and
performance is to be properly balanced, depending on the
performance requirements for superresolution in the problem at hand.

Enhanced target imagery by exploiting
structured sparsity
In the "Superresolution Radar Imagery" section, we demonstrate that statistical sparsity could lead to improvements
over deterministic sparsity in superresolution radar imagery.
To carry out sparse estimation, the scaled Gaussian mixture
is imposed on the scattering coefficients, which are
assumed to be independently distributed. However, in practice, targets in radar images always exhibit strong spatial
correlation due to the fact that a real target is physically
continuous [39], [44]-[46]. For example, the radar returns
from a tank or an airplane will often exhibit strong spatial
correlation, i.e., nonzero-valued scatterers in the target
region continuously residing in the range and/or cross-range
dimensions. This phenomenon motivated the research in
[39], [45], and [46], which modifies the statistical sparse
model accordingly. In these works, continuity in the target
scene is exploited by incorporating a correlated prior in a
probabilistic framework. In what follows, we review methods that impose first-order and higher-order correlations on
the sparse scattering coefficients.

First-order correlation
In [39], [44], and [45], a modification in spike-and-slab
modeling was made so as to impose first-order spatial
correlation of the coefficients. The reason for choosing
the spike-and-slab prior rather than the scaled Gaussian
mixture is because imposing correlation on the support of
the sparse signal is more accurate and justifiable than
imposing it on the amplitude of the sparse signal. As
92

discussed in the "Statistical Sparsity Formulation of
Radar Imagery" section, the sparsity pattern of the signal
is determined by W in the spike-and-slab model in (7),
where the parameter q controls the probability of W
being nonzero. Therefore, a straightforward way to
impose a continuity prior on the signal can be carried out
directly on W. However, this treatment deviates from the
original intention to perform a flexible statistical modeling step. For this particular reason, it is suggested in [39]
and [45] to encode the first-order structural information
on q in an intermediate way rather than straightforwardly
on W. The key modification is to replace the single beta
prior for parameter q by a set of beta priors that consist of
three different sets of parameters, " e k, fk ,k = 0, 1, 2, so as to
capture strongly independent, strongly continuous, and
noninformative priors, respectively.
The proposed sparsity patterns in [39] and [45] that both
encourage continuity and preserve sparsity are summarized
as follows.
■ Strong rejection: If the first-order neighborhoods of X mn
are all zero, it would be very likely that X mn is also zero,
due to the continuity of the target scene. The prior
Beta(e 0, f0), with e 0 1 f0, is utilized to make the probability qmn of Wmn = 0 being large. This means that the absence
of a first-order neighborhood implies the investigated scatterer being zero with a high probability. This rejection
pattern can eliminate the undesired isolated speckles or
artifacts in the radar image.
■ Strong acceptance: If any of the continuity patterns for
X mn in Figure 3 is observed, the prior that a nonzero-valued X mn arises with a high possibility should be imposed.
This step imposes continuity of the target image. In this
case, the prior Beta (e 1, f1), with e 1 2 f1, enforces the
probability qmn of Wmn = 1 to be large, and thus the scatterer under test can be accepted. This implies that the occurrence of any pattern in Figure 3 leads to one that is nonzero
with a high probability. This pattern enforces first-order
correlation of the scattering coefficient and therefore continuity of the target.
■ Weak rejection: Apart from the scenario of strong rejection
and strong acceptance patterns, a noninformative prior is
imposed on any other neighborhood patterns for Xmn. The
prior Beta (e 2, f2), with e2 = f2, is used to impose a noninformative prior on qmn. This appropriately allows the model
to be effective in imposing the prior whenever necessary
and to remain noninformative whenever no strong rejection
or acceptance patterns appear.
By adaptively selecting from different beta hyperpriors, the statistical model can either encourage continuity or
independence, apart from mere sparsity. In this manner, the
structured information can be flexibly incorporated to obtain
concentrated imagery results. A key component in incorporating the prior is that it is imposed on the parameter q rather
than directly on W. The underlying motivation for this formulation is that it is more flexible to impose a probabilistic belief
than a rigid support W.

IEEE SIgnal ProcESSIng MagazInE

|

November 2016

|



Table of Contents for the Digital Edition of Signal Processing - November 2016

Signal Processing - November 2016 - Cover1
Signal Processing - November 2016 - Cover2
Signal Processing - November 2016 - 1
Signal Processing - November 2016 - 2
Signal Processing - November 2016 - 3
Signal Processing - November 2016 - 4
Signal Processing - November 2016 - 5
Signal Processing - November 2016 - 6
Signal Processing - November 2016 - 7
Signal Processing - November 2016 - 8
Signal Processing - November 2016 - 9
Signal Processing - November 2016 - 10
Signal Processing - November 2016 - 11
Signal Processing - November 2016 - 12
Signal Processing - November 2016 - 13
Signal Processing - November 2016 - 14
Signal Processing - November 2016 - 15
Signal Processing - November 2016 - 16
Signal Processing - November 2016 - 17
Signal Processing - November 2016 - 18
Signal Processing - November 2016 - 19
Signal Processing - November 2016 - 20
Signal Processing - November 2016 - 21
Signal Processing - November 2016 - 22
Signal Processing - November 2016 - 23
Signal Processing - November 2016 - 24
Signal Processing - November 2016 - 25
Signal Processing - November 2016 - 26
Signal Processing - November 2016 - 27
Signal Processing - November 2016 - 28
Signal Processing - November 2016 - 29
Signal Processing - November 2016 - 30
Signal Processing - November 2016 - 31
Signal Processing - November 2016 - 32
Signal Processing - November 2016 - 33
Signal Processing - November 2016 - 34
Signal Processing - November 2016 - 35
Signal Processing - November 2016 - 36
Signal Processing - November 2016 - 37
Signal Processing - November 2016 - 38
Signal Processing - November 2016 - 39
Signal Processing - November 2016 - 40
Signal Processing - November 2016 - 41
Signal Processing - November 2016 - 42
Signal Processing - November 2016 - 43
Signal Processing - November 2016 - 44
Signal Processing - November 2016 - 45
Signal Processing - November 2016 - 46
Signal Processing - November 2016 - 47
Signal Processing - November 2016 - 48
Signal Processing - November 2016 - 49
Signal Processing - November 2016 - 50
Signal Processing - November 2016 - 51
Signal Processing - November 2016 - 52
Signal Processing - November 2016 - 53
Signal Processing - November 2016 - 54
Signal Processing - November 2016 - 55
Signal Processing - November 2016 - 56
Signal Processing - November 2016 - 57
Signal Processing - November 2016 - 58
Signal Processing - November 2016 - 59
Signal Processing - November 2016 - 60
Signal Processing - November 2016 - 61
Signal Processing - November 2016 - 62
Signal Processing - November 2016 - 63
Signal Processing - November 2016 - 64
Signal Processing - November 2016 - 65
Signal Processing - November 2016 - 66
Signal Processing - November 2016 - 67
Signal Processing - November 2016 - 68
Signal Processing - November 2016 - 69
Signal Processing - November 2016 - 70
Signal Processing - November 2016 - 71
Signal Processing - November 2016 - 72
Signal Processing - November 2016 - 73
Signal Processing - November 2016 - 74
Signal Processing - November 2016 - 75
Signal Processing - November 2016 - 76
Signal Processing - November 2016 - 77
Signal Processing - November 2016 - 78
Signal Processing - November 2016 - 79
Signal Processing - November 2016 - 80
Signal Processing - November 2016 - 81
Signal Processing - November 2016 - 82
Signal Processing - November 2016 - 83
Signal Processing - November 2016 - 84
Signal Processing - November 2016 - 85
Signal Processing - November 2016 - 86
Signal Processing - November 2016 - 87
Signal Processing - November 2016 - 88
Signal Processing - November 2016 - 89
Signal Processing - November 2016 - 90
Signal Processing - November 2016 - 91
Signal Processing - November 2016 - 92
Signal Processing - November 2016 - 93
Signal Processing - November 2016 - 94
Signal Processing - November 2016 - 95
Signal Processing - November 2016 - 96
Signal Processing - November 2016 - 97
Signal Processing - November 2016 - 98
Signal Processing - November 2016 - 99
Signal Processing - November 2016 - 100
Signal Processing - November 2016 - 101
Signal Processing - November 2016 - 102
Signal Processing - November 2016 - 103
Signal Processing - November 2016 - 104
Signal Processing - November 2016 - 105
Signal Processing - November 2016 - 106
Signal Processing - November 2016 - 107
Signal Processing - November 2016 - 108
Signal Processing - November 2016 - 109
Signal Processing - November 2016 - 110
Signal Processing - November 2016 - 111
Signal Processing - November 2016 - 112
Signal Processing - November 2016 - 113
Signal Processing - November 2016 - 114
Signal Processing - November 2016 - 115
Signal Processing - November 2016 - 116
Signal Processing - November 2016 - 117
Signal Processing - November 2016 - 118
Signal Processing - November 2016 - 119
Signal Processing - November 2016 - 120
Signal Processing - November 2016 - 121
Signal Processing - November 2016 - 122
Signal Processing - November 2016 - 123
Signal Processing - November 2016 - 124
Signal Processing - November 2016 - 125
Signal Processing - November 2016 - 126
Signal Processing - November 2016 - 127
Signal Processing - November 2016 - 128
Signal Processing - November 2016 - 129
Signal Processing - November 2016 - 130
Signal Processing - November 2016 - 131
Signal Processing - November 2016 - 132
Signal Processing - November 2016 - 133
Signal Processing - November 2016 - 134
Signal Processing - November 2016 - 135
Signal Processing - November 2016 - 136
Signal Processing - November 2016 - 137
Signal Processing - November 2016 - 138
Signal Processing - November 2016 - 139
Signal Processing - November 2016 - 140
Signal Processing - November 2016 - 141
Signal Processing - November 2016 - 142
Signal Processing - November 2016 - 143
Signal Processing - November 2016 - 144
Signal Processing - November 2016 - 145
Signal Processing - November 2016 - 146
Signal Processing - November 2016 - 147
Signal Processing - November 2016 - 148
Signal Processing - November 2016 - Cover3
Signal Processing - November 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com