Signal Processing - November 2016 - 97
Due to the utilization of the structured sparse constraint,
the proposed method preserves the target region and alleviates the overshrinkage problem, as compared to the previously presented sparsity-driven autofocus approaches.
The superior performance of the structured sparsity-based
technique is shown in Figure 9. Compared with other
approaches, the structured sparsity-based autofocus method
achieves a better-concentrated image, with more coefficients recovered in the target region with different undersampling ratios.
120
Range Cell
100
60
40
20
Statistical sparsity-based SAR GMTIm
Imaging ground moving targets in SAR has become
increasingly important. Conventionally, in imaging a
potentially moving target, hypotheses of the target
motion were constructed to match the signal by a filter
bank [50]. In the scenario of closely located targets, however, their responses cannot be well distinguished from
each other. Recent advances in sparsity-based SAR
GMTIm [5], [16], suggest that sparsity can be properly
exploited to enable multitarget processing and higher
accuracy. This application is rather different from the
previously introduced ones, since the received radar
echoes can no longer be simply modeled as a sum of harmonics but rather as multicomponent LFM signals with
unknown chirp rates. Therefore, the key challenge in
SAR GMTIm is to properly formulate a mathematical
model that allows a sparse representation of the images
for moving targets. In [16], the signal model was constructed as a sparse linear model, where an overcomplete
dictionary was constructed by using a discretized velocity
grid. Although empirical results demonstrate the success
of the method, its performance is inhibited by the discretization errors in the dictionary. In this section, we briefly
review two recent works based on statistical sparsity from
different angles.
In [51], a statistical framework was formulated to obtain
the moving target image, which could avoid the construction of a large overcomplete dictionary. In particular, this
work considers a K channel SAR system with F passes,
collecting data from P azimuth angles and Q range cells.
The complex-valued raw SAR image is decomposed as [51]
Y p, f = E p, f . (L p, f + S p, f + N p, f ),
p = 1, ..., P and f = 1, ..., F,
Q#K
80
(17)
where Y p, f ! C
denotes the raw SAR image at azimuth p
and pass f, E p, f ! C Q # K is the corresponding spatial-temporal calibration error, L p, f ! C Q # K represents background
clut ter, S p, f ! C Q # K models t he moving t a rget, a nd
N p, f ! C Q # K models the noise. Since the number of parameters to be estimated is much larger than the number of observations Y, proper priors must be selected for each of these
parameters. Interested readers are referred to [51] for more
details. Here, we only highlight the key statistical models in
this formulation.
10
50
40
30
20
Cross-Range Cell
(a)
60
20
40
60
80
100
Cross-Range Cell
(b)
120
20
40
60
80
100
Cross-Range Cell
(c)
120
120
Range Cell
100
80
60
40
20
120
Range Cell
100
80
60
40
20
FIGURE 8. The radar imagery results with one-half of the measurements,
obtained by (a) RDA, (b) a method in [14], and (c) a method in [47].
■
IEEE SIgnal ProcESSIng MagazInE
The clutter L p, f is decomposed into a sum of a passinvariant background term B p and a pass-specific
speckle term X p, f . Assuming that the background clutter B p can be represented by one of several classes,
such as a road or buildings, a complex Gaussian prior is
used for B p with a set of unknown covariance matrices
that account for different classes, where each covariance matrix follows an inverse Wishart distribution.
|
November 2016
|
97
Table of Contents for the Digital Edition of Signal Processing - November 2016
Signal Processing - November 2016 - Cover1
Signal Processing - November 2016 - Cover2
Signal Processing - November 2016 - 1
Signal Processing - November 2016 - 2
Signal Processing - November 2016 - 3
Signal Processing - November 2016 - 4
Signal Processing - November 2016 - 5
Signal Processing - November 2016 - 6
Signal Processing - November 2016 - 7
Signal Processing - November 2016 - 8
Signal Processing - November 2016 - 9
Signal Processing - November 2016 - 10
Signal Processing - November 2016 - 11
Signal Processing - November 2016 - 12
Signal Processing - November 2016 - 13
Signal Processing - November 2016 - 14
Signal Processing - November 2016 - 15
Signal Processing - November 2016 - 16
Signal Processing - November 2016 - 17
Signal Processing - November 2016 - 18
Signal Processing - November 2016 - 19
Signal Processing - November 2016 - 20
Signal Processing - November 2016 - 21
Signal Processing - November 2016 - 22
Signal Processing - November 2016 - 23
Signal Processing - November 2016 - 24
Signal Processing - November 2016 - 25
Signal Processing - November 2016 - 26
Signal Processing - November 2016 - 27
Signal Processing - November 2016 - 28
Signal Processing - November 2016 - 29
Signal Processing - November 2016 - 30
Signal Processing - November 2016 - 31
Signal Processing - November 2016 - 32
Signal Processing - November 2016 - 33
Signal Processing - November 2016 - 34
Signal Processing - November 2016 - 35
Signal Processing - November 2016 - 36
Signal Processing - November 2016 - 37
Signal Processing - November 2016 - 38
Signal Processing - November 2016 - 39
Signal Processing - November 2016 - 40
Signal Processing - November 2016 - 41
Signal Processing - November 2016 - 42
Signal Processing - November 2016 - 43
Signal Processing - November 2016 - 44
Signal Processing - November 2016 - 45
Signal Processing - November 2016 - 46
Signal Processing - November 2016 - 47
Signal Processing - November 2016 - 48
Signal Processing - November 2016 - 49
Signal Processing - November 2016 - 50
Signal Processing - November 2016 - 51
Signal Processing - November 2016 - 52
Signal Processing - November 2016 - 53
Signal Processing - November 2016 - 54
Signal Processing - November 2016 - 55
Signal Processing - November 2016 - 56
Signal Processing - November 2016 - 57
Signal Processing - November 2016 - 58
Signal Processing - November 2016 - 59
Signal Processing - November 2016 - 60
Signal Processing - November 2016 - 61
Signal Processing - November 2016 - 62
Signal Processing - November 2016 - 63
Signal Processing - November 2016 - 64
Signal Processing - November 2016 - 65
Signal Processing - November 2016 - 66
Signal Processing - November 2016 - 67
Signal Processing - November 2016 - 68
Signal Processing - November 2016 - 69
Signal Processing - November 2016 - 70
Signal Processing - November 2016 - 71
Signal Processing - November 2016 - 72
Signal Processing - November 2016 - 73
Signal Processing - November 2016 - 74
Signal Processing - November 2016 - 75
Signal Processing - November 2016 - 76
Signal Processing - November 2016 - 77
Signal Processing - November 2016 - 78
Signal Processing - November 2016 - 79
Signal Processing - November 2016 - 80
Signal Processing - November 2016 - 81
Signal Processing - November 2016 - 82
Signal Processing - November 2016 - 83
Signal Processing - November 2016 - 84
Signal Processing - November 2016 - 85
Signal Processing - November 2016 - 86
Signal Processing - November 2016 - 87
Signal Processing - November 2016 - 88
Signal Processing - November 2016 - 89
Signal Processing - November 2016 - 90
Signal Processing - November 2016 - 91
Signal Processing - November 2016 - 92
Signal Processing - November 2016 - 93
Signal Processing - November 2016 - 94
Signal Processing - November 2016 - 95
Signal Processing - November 2016 - 96
Signal Processing - November 2016 - 97
Signal Processing - November 2016 - 98
Signal Processing - November 2016 - 99
Signal Processing - November 2016 - 100
Signal Processing - November 2016 - 101
Signal Processing - November 2016 - 102
Signal Processing - November 2016 - 103
Signal Processing - November 2016 - 104
Signal Processing - November 2016 - 105
Signal Processing - November 2016 - 106
Signal Processing - November 2016 - 107
Signal Processing - November 2016 - 108
Signal Processing - November 2016 - 109
Signal Processing - November 2016 - 110
Signal Processing - November 2016 - 111
Signal Processing - November 2016 - 112
Signal Processing - November 2016 - 113
Signal Processing - November 2016 - 114
Signal Processing - November 2016 - 115
Signal Processing - November 2016 - 116
Signal Processing - November 2016 - 117
Signal Processing - November 2016 - 118
Signal Processing - November 2016 - 119
Signal Processing - November 2016 - 120
Signal Processing - November 2016 - 121
Signal Processing - November 2016 - 122
Signal Processing - November 2016 - 123
Signal Processing - November 2016 - 124
Signal Processing - November 2016 - 125
Signal Processing - November 2016 - 126
Signal Processing - November 2016 - 127
Signal Processing - November 2016 - 128
Signal Processing - November 2016 - 129
Signal Processing - November 2016 - 130
Signal Processing - November 2016 - 131
Signal Processing - November 2016 - 132
Signal Processing - November 2016 - 133
Signal Processing - November 2016 - 134
Signal Processing - November 2016 - 135
Signal Processing - November 2016 - 136
Signal Processing - November 2016 - 137
Signal Processing - November 2016 - 138
Signal Processing - November 2016 - 139
Signal Processing - November 2016 - 140
Signal Processing - November 2016 - 141
Signal Processing - November 2016 - 142
Signal Processing - November 2016 - 143
Signal Processing - November 2016 - 144
Signal Processing - November 2016 - 145
Signal Processing - November 2016 - 146
Signal Processing - November 2016 - 147
Signal Processing - November 2016 - 148
Signal Processing - November 2016 - Cover3
Signal Processing - November 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com