Signal Processing - November 2017 - 108
[53] M. R. Amer, B. Siddiquie, S. Khan, A. Divakaran, and H. Sawhney, "Multimodal
fusion using dynamic hybrid models," in Proc. IEEE 2014 Applications of Computer
Vision Winter Conf., 2014, pp. 556-563.
[80] K. O. Stanley and R. Miikkulainen, "Efficient evolution of neural network
topologies," in Proc. Congr. Evolutionary Computation (CEC02), 2002, pp.
1757-1762.
[54] D. S. Sachan, U. Tekwani, and A. Sethi, "Sports video classification from multimodal information using deep neural networks," in Proc. 2013 Association for the
Advancement of Artificial Intelligence Fall Symp., 2013, pp. 102-107.
[81] T. Shinozaki and S. Watanabe, "Structure discovery of deep neural network based
on evolutionary algorithms," in Proc. 2015 IEEE Int. Conf. Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 4979-4983.
[55] Y. Liu, X. Feng, and Z. Zhou, "Multimodal video classification with stacked contractive autoencoders," Signal Processing, vol. 120, pp. 761-766, Mar. 2016.
[82] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, "Taking the
human out of the loop: A review of Bayesian optimization," Proc. IEEE, vol. 104, no.
1, pp. 148-175, 2016.
[56] N. Sebe, Machine Learning in Computer Vision, vol. 29. Dordrecht, The
Netherlands: Springer, 2005.
[57] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba, Ambient
Sound Provides Supervision for Visual Learning. Cham, Switzerland: Springer
International Publishing, 2016, pp. 801-816.
[83] D. Ramachandram, M. Lisicki, T. Shields, M. Amer, and G. Taylor, "Structure
optimization for deep multimodal fusion networks using graph-induced kernels," in
Proc. 25th European Symp. Artificial Neural Networks, Computational Intelligence,
and Machine Learning (ESANN), Bruges, Belgium, 2017, pp. 11-16.
[58] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with
neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
[84] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, vol. 1.
Cambridge, MA: MIT Press, 1998.
[59] D. Wang, P. Cui, M. Ou, and W. Zhu, "Learning compact hash codes for multimodal representations using orthogonal deep structure," IEEE Trans. Multimedia, vol.
17, no. 9, pp. 1404-1416, 2015.
[85] B. Zoph and Q. V. Le. (2016). Neural architecture search with reinforcement learning. arXiv. [Online]. Available: https://arxiv.org/abs/1611.01578
[60] J. Masci, M. M. Bronstein, A. M. Bronstein, and J. Schmidhuber, "Multimodal
similarity-preserving hashing," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4,
pp. 824-830, 2014.
[61] H. P. Martínez and G. N. Yannakakis, "Deep multimodal fusion," in Proc. 16th
Int. Conf. Multimodal Interaction, 2014, pp. 34-41.
[62] S. E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, Ç. Gülçehre, R. Memisevic, P.
Vincent, A. Courville, et al., "Combining modality specific deep neural networks for
emotion recognition in video," in Proc. 15th ACM Int. Conf. Multimodal Interaction,
2013, pp. 543-550.
[63] D. Yi, Z. Lei, and S. Z. Li, "Shared representation learning for heterogenous face
recognition," in Proc. Automatic Face and Gesture Recognition 11th IEEE Int. Conf.
Workshops, 2015, pp. 1-7.
[64] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei,
"Large-scale video classification with convolutional neural networks," in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2014, pp. 1725-1732.
[65] M. J. Wainwright, "Structured regularizers for high-dimensional problems:
Statistical and computational issues," Annu. Rev. Statistics Application, vol. 1, pp.
233-253, Apr. 2014.
[66] K. Sohn, W. Shang, and H. Lee, "Improved multimodal deep learning with variation of information," in Proc. Advances in Neural Information Processing Systems.,
2014, pp. 2141-2149.
[67] J. J.-Y. Wang, Y. Wang, S. Zhao, and X. Gao, "Maximum mutual information
regularized classification," Eng. Applicat. Artificial Intell., vol. 37, pp. 1-8, Jan.
2015.
[68] S. Zhu, X. Li, and S. Shen, "Multimodal deep network learning-based image annotation," IET Electron. Lett., vol. 51, no. 12, pp. 905-906, 2015.
[69] H. Fei and J. Huan, "Structured feature selection and task relationship inference
for multi-task learning," Knowledge and Inform. Syst., vol. 35, no. 2, pp. 345-364,
2013.
[70] Z. Wu, Y.-G. Jiang, J. Wang, J. Pu, and X. Xue, "Exploring inter-feature and interclass relationships with deep neural networks for video classification," in Proc. ACM
Int. Conf. Multimedia, 2014, pp. 167-176.
[71] A. Wang, J. Lu, J. Cai, T. J. Cham, and G. Wang, "Large-margin multi-modal deep
learning for RGB-D object recognition," IEEE Trans. Multimedia, vol. 17, no. 11, pp.
1887-1898, Nov. 2015.
[72] A. Wang, J. Cai, J. Lu, and T.-J. Cham, "MMSS: Multi-modal sharable and specific feature learning for RGB-D object recognition," in Proc. IEEE Int. Conf. Computer
Vision, 2015, pp. 1125-1133.
[73] J. Elman, "Learning and development in neural networks: The importance of starting small," Cognition, vol. 48, no. 1, pp. 71-99, 1993.
[74] T. Chen, I. Goodfellow, and J. Shlens. (2015). Net2Net: Accelerating learning via
knowledge transfer. arXiv. [Online]. Available: https://arxiv.org/abs/1511.05641
[75] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, "Going deeper with convolutions," in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2015, pp. 1-9.
[76] R. Reed, "Pruning algorithms-A survey," IEEE Trans. Neural Netw., vol. 4, no.
5, pp. 740-747, 1993.
[77] J. Feng and T. Darrel, "Learning the structure of deep convolutional networks," in
Proc. Int. Conf. Computer Vision, 2015, pp. 2749-2757.
[78] J. Yang, J. Ma, M. Berryman, and P. Perez, "A structure optimization algorithm of
neural networks for large-scale data sets," in Proc. 2014 IEEE Int. Conf. Fuzzy Syst.
(FUZZ-IEEE), 2014, pp. 956-961.
[79] D. Whitley, T. Starkweather, and C. Bogart, "Genetic algorithms and neural networks: Optimizing connections and connectivity," Parallel Comput., vol. 14, no. 3, pp.
347-361, 1990.
108
[86] P. Kulkarni, J. Zepeda, F. Jurie, P. Pérez, and L. Chevallier, "Learning the structure of deep architectures using L1 regularization," in Proc. British Machine Vision
Conf., 2015, pp. 23.1-23.11.
[87] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
"Dropout: A simple way to prevent neural networks from overfitting," J. Mach.
Learning Res., vol. 15, no. 1, pp. 1929-1958, 1 Jan. 2014.
[88] C. Murdock, Z. Li, H. Zhou, and T. Duerig, "Blockout: Dynamic model selection
for hierarchical deep networks," in Proc. Int. Conf. Computer Vision and Pattern
Recognition, 2016, pp. 2583-2591.
[89] F. Li, N. Neverova, C. Wolf, and G. Taylor, "Modout: Learning multi-modal architectures by stochastic regularization," in Proc. 2017 IEEE Conf. Automatic Face and
Gesture Recognition, 2017, pp. 422-429.
[90] M. Firman, "RGBD data sets: Past, present and future," in Proc. CVPR Workshop
on Large Scale 3D Data: Acquisition, Modelling, and Analysis, 2016.
[91] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The Kitti
data set," Int. J. Robotics Res., vol. 32, no. 11, pp. 1231-1237, 2013.
[92] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, "1 Year, 1000km: The
Oxford RobotCar data set," Int. J. Robotics Res., vol. 36, no. 1, pp. 3-15, 2017.
[93] C. Chen, R. Jafari, and N. Kehtarnavaz, "UTD-MHAD: A multimodal data set for
human action recognition utilizing a depth camera and a wearable inertial sensor," in
Proc. 2015 IEEE Int. Conf Image Processing (ICIP), 2015, pp. 168-172.
[94] S. Escalera, X. Baró, J. Gonzalez, M. A. Bautista, M. Madadi, M. Reyes, V.
Ponce-López, H. J. Escalante, et al., "Chalearn looking at people challenge 2014: Data
set and results," in Proc. Workshop at the European Conf. Computer Vision, 2014, pp.
459-473.
[95] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, "Berkeley MHAD: A
comprehensive multimodal human action database," in Proc. 2013 IEEE Workshop on
Applications of Computer Vision, 2013, pp. 53-60.
[96] A. Pablo, Y. Mollard, F. Golemo, A. C. Murillo, M. Lopes, and J. Civera, "A multimodal human-robot interaction data set," in Proc. Neural Information Processing
Systems, 2016, pp. 1-5.
[97] F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, "Introducing the Recola
multimodal corpus of remote collaborative and affective interactions," in Proc.
Automatic Face and Gesture Recognition 10th IEEE Int. Conf. Workshops, 2013, pp.
1-8.
[98] O. Banos, C. Villalonga, R. Garcia, A. Saez, M. Damas, J. A. Holgado-Terriza, S.
Lee, H. Pomares, and I. Rojas, "Design, implementation and validation of a novel open
framework for agile development of mobile health applications," Biomedical Eng.
Online, vol. 14, no. 2, p. S6, 2015. [Online]. Available: https://doi.org/10.1186/1475925X-14-S2-S6
[99] J. Mao, J. Xu, K. Jing, and A. L. Yuille, "Training and evaluating multimodal
word embeddings with large-scale web annotated images," in Proc. Advances in
Neural Information Processing Systems, 2016, pp. 442-450.
[100] J. Arevalo, T. Solorio, M. Montes-y Gómez, and F. A. González. (2017). Gated
multimodal units for information fusion. arXiv. [Online]. Available: https://arxiv.org/
abs/1702.01992
[101] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang, "Exploiting feature and
class relationships in video categorization with regularized deep neural networks," IEEE
Trans. Pattern Anal. Mach. Intell., 2017. doi: https://doi.org/10.1109/
TPAMI.2017.2670560
[102] R. Min, N. Kose, and J.-L. Dugelay, "KinectFaceDB: A kinect database for face
recognition," IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 11, pp. 1534-1548,
Nov. 2014.
[103] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y.
Burren, N. Porz, et al., "The multimodal brain tumor image segmentation benchmark
(BRATS)," IEEE Trans. Med. Imag., vol. 34, no. 10, pp. 1993-2024, 2015.
SP
IEEE SIGNAL PROCESSING MAGAZINE
|
November 2017
|
https://www.arxiv.org/abs/1611.01578
https://www.doi.org/10.1186/1475
https://www.arxiv.org/abs/1511.05641
https://www.arxiv.org/
https://www.doi.org/10.1109/
Table of Contents for the Digital Edition of Signal Processing - November 2017
Signal Processing - November 2017 - Cover1
Signal Processing - November 2017 - Cover2
Signal Processing - November 2017 - 1
Signal Processing - November 2017 - 2
Signal Processing - November 2017 - 3
Signal Processing - November 2017 - 4
Signal Processing - November 2017 - 5
Signal Processing - November 2017 - 6
Signal Processing - November 2017 - 7
Signal Processing - November 2017 - 8
Signal Processing - November 2017 - 9
Signal Processing - November 2017 - 10
Signal Processing - November 2017 - 11
Signal Processing - November 2017 - 12
Signal Processing - November 2017 - 13
Signal Processing - November 2017 - 14
Signal Processing - November 2017 - 15
Signal Processing - November 2017 - 16
Signal Processing - November 2017 - 17
Signal Processing - November 2017 - 18
Signal Processing - November 2017 - 19
Signal Processing - November 2017 - 20
Signal Processing - November 2017 - 21
Signal Processing - November 2017 - 22
Signal Processing - November 2017 - 23
Signal Processing - November 2017 - 24
Signal Processing - November 2017 - 25
Signal Processing - November 2017 - 26
Signal Processing - November 2017 - 27
Signal Processing - November 2017 - 28
Signal Processing - November 2017 - 29
Signal Processing - November 2017 - 30
Signal Processing - November 2017 - 31
Signal Processing - November 2017 - 32
Signal Processing - November 2017 - 33
Signal Processing - November 2017 - 34
Signal Processing - November 2017 - 35
Signal Processing - November 2017 - 36
Signal Processing - November 2017 - 37
Signal Processing - November 2017 - 38
Signal Processing - November 2017 - 39
Signal Processing - November 2017 - 40
Signal Processing - November 2017 - 41
Signal Processing - November 2017 - 42
Signal Processing - November 2017 - 43
Signal Processing - November 2017 - 44
Signal Processing - November 2017 - 45
Signal Processing - November 2017 - 46
Signal Processing - November 2017 - 47
Signal Processing - November 2017 - 48
Signal Processing - November 2017 - 49
Signal Processing - November 2017 - 50
Signal Processing - November 2017 - 51
Signal Processing - November 2017 - 52
Signal Processing - November 2017 - 53
Signal Processing - November 2017 - 54
Signal Processing - November 2017 - 55
Signal Processing - November 2017 - 56
Signal Processing - November 2017 - 57
Signal Processing - November 2017 - 58
Signal Processing - November 2017 - 59
Signal Processing - November 2017 - 60
Signal Processing - November 2017 - 61
Signal Processing - November 2017 - 62
Signal Processing - November 2017 - 63
Signal Processing - November 2017 - 64
Signal Processing - November 2017 - 65
Signal Processing - November 2017 - 66
Signal Processing - November 2017 - 67
Signal Processing - November 2017 - 68
Signal Processing - November 2017 - 69
Signal Processing - November 2017 - 70
Signal Processing - November 2017 - 71
Signal Processing - November 2017 - 72
Signal Processing - November 2017 - 73
Signal Processing - November 2017 - 74
Signal Processing - November 2017 - 75
Signal Processing - November 2017 - 76
Signal Processing - November 2017 - 77
Signal Processing - November 2017 - 78
Signal Processing - November 2017 - 79
Signal Processing - November 2017 - 80
Signal Processing - November 2017 - 81
Signal Processing - November 2017 - 82
Signal Processing - November 2017 - 83
Signal Processing - November 2017 - 84
Signal Processing - November 2017 - 85
Signal Processing - November 2017 - 86
Signal Processing - November 2017 - 87
Signal Processing - November 2017 - 88
Signal Processing - November 2017 - 89
Signal Processing - November 2017 - 90
Signal Processing - November 2017 - 91
Signal Processing - November 2017 - 92
Signal Processing - November 2017 - 93
Signal Processing - November 2017 - 94
Signal Processing - November 2017 - 95
Signal Processing - November 2017 - 96
Signal Processing - November 2017 - 97
Signal Processing - November 2017 - 98
Signal Processing - November 2017 - 99
Signal Processing - November 2017 - 100
Signal Processing - November 2017 - 101
Signal Processing - November 2017 - 102
Signal Processing - November 2017 - 103
Signal Processing - November 2017 - 104
Signal Processing - November 2017 - 105
Signal Processing - November 2017 - 106
Signal Processing - November 2017 - 107
Signal Processing - November 2017 - 108
Signal Processing - November 2017 - 109
Signal Processing - November 2017 - 110
Signal Processing - November 2017 - 111
Signal Processing - November 2017 - 112
Signal Processing - November 2017 - 113
Signal Processing - November 2017 - 114
Signal Processing - November 2017 - 115
Signal Processing - November 2017 - 116
Signal Processing - November 2017 - 117
Signal Processing - November 2017 - 118
Signal Processing - November 2017 - 119
Signal Processing - November 2017 - 120
Signal Processing - November 2017 - 121
Signal Processing - November 2017 - 122
Signal Processing - November 2017 - 123
Signal Processing - November 2017 - 124
Signal Processing - November 2017 - 125
Signal Processing - November 2017 - 126
Signal Processing - November 2017 - 127
Signal Processing - November 2017 - 128
Signal Processing - November 2017 - 129
Signal Processing - November 2017 - 130
Signal Processing - November 2017 - 131
Signal Processing - November 2017 - 132
Signal Processing - November 2017 - 133
Signal Processing - November 2017 - 134
Signal Processing - November 2017 - 135
Signal Processing - November 2017 - 136
Signal Processing - November 2017 - 137
Signal Processing - November 2017 - 138
Signal Processing - November 2017 - 139
Signal Processing - November 2017 - 140
Signal Processing - November 2017 - 141
Signal Processing - November 2017 - 142
Signal Processing - November 2017 - 143
Signal Processing - November 2017 - 144
Signal Processing - November 2017 - 145
Signal Processing - November 2017 - 146
Signal Processing - November 2017 - 147
Signal Processing - November 2017 - 148
Signal Processing - November 2017 - 149
Signal Processing - November 2017 - 150
Signal Processing - November 2017 - 151
Signal Processing - November 2017 - 152
Signal Processing - November 2017 - 153
Signal Processing - November 2017 - 154
Signal Processing - November 2017 - 155
Signal Processing - November 2017 - 156
Signal Processing - November 2017 - 157
Signal Processing - November 2017 - 158
Signal Processing - November 2017 - 159
Signal Processing - November 2017 - 160
Signal Processing - November 2017 - 161
Signal Processing - November 2017 - 162
Signal Processing - November 2017 - 163
Signal Processing - November 2017 - 164
Signal Processing - November 2017 - 165
Signal Processing - November 2017 - 166
Signal Processing - November 2017 - 167
Signal Processing - November 2017 - 168
Signal Processing - November 2017 - 169
Signal Processing - November 2017 - 170
Signal Processing - November 2017 - 171
Signal Processing - November 2017 - 172
Signal Processing - November 2017 - 173
Signal Processing - November 2017 - 174
Signal Processing - November 2017 - 175
Signal Processing - November 2017 - 176
Signal Processing - November 2017 - Cover3
Signal Processing - November 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com