Signal Processing - November 2017 - 128
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 2940-
2949.
[37] J. Yang, R. Yan, and A. G. Hauptmann, "Cross-domain video concept detection
using adaptive SVMs," in Proc. ACM Int. Conf. Multimedia, 2007, pp. 188-197.
[9] B. Fernando, T. Tommasi, and T. Tuytelaars, "Location recognition over large
time lags," Comput. Vision Image Understand., vol. 139, pp. 21-28, Oct. 2015.
[38] S. J. Pan, J. T. Kwok, and Q. Yang, "Transfer learning via dimensionality
reduction," in Proc. AAAI Conf. Artificial Intelligence, 2008, vol. 8, pp. 677-682.
[10] L. Bruzzone and M. Marconcini, "Domain adaptation problems: A DASVM
classification technique and a circular validation strategy," IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 5, pp. 770-787, 2010.
[39] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, "Simultaneous deep transfer across domains and tasks," in Proc. IEEE Int. Conf. Computer Vision, 2015,
pp. 4068-4076.
[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA: MIT Press, 2016.
[40] Q. Sun, R. Chattopadhyay, S. Panchanathan, and J. Ye, "A two-stage weighting framework for multi-source domain adaptation," in Proc. Advances in
Neural Information Processing Systems Conf., 2011, pp. 505-513.
[12] R. Caruana, "Multitask learning," Mach. Learn., vol. 28, no. 1, pp. 41-75, 1997.
[13] S. Thrun and L. Pratt, Learning to Learn. New York: Springer Science &
Business Media, 2012.
[14] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, "Self-taught learning:
transfer learning from unlabeled data," in Proc. ACM Int. Conf. Machine
Learning, 2007, pp. 759-766.
[15] J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear spatial pyramid matching
using sparse coding for image classification," in Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2009, pp. 1794-1801.
[16] Y. Bengio, "Learning deep architectures for AI," Foundations Trends Mach.
Learn., vol. 2, no. 1, pp. 1-127, 2009.
[17] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations," in
Proc. ACM Int. Conf. Machine Learning, 2009, pp. 609-616.
[18] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online learning for matrix factorization and sparse coding," J. Mach. Learn. Res, vol. 11, pp. 19-60, Jan. 2010.
[19] J. J. Heck man, "Sample selection bias as a specification error,"
Econometrica: J. Economet. Soc., vol. 1, no. 47, pp. 153-161, 1979.
[20] B. Zadrozny, "Learning and evaluating classifiers under sample selection
bias," in Proc. ACM Int. Conf. Machine Learning, 2004, p. 114.
[21] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh, "Sample selection bias correction theory," in Proc. Int. Conf. Algorithmic Learning Theory, 2008, pp. 38-53.
[22] M. Dudík, S. J. Phillips, and R. E. Schapire, "Correcting sample selection
bias in maximum entropy density estimation," in Proc. Advances in Neural
Information Processing Systems Conf., 2005, pp. 323-330.
[23] J. Huang, A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola,
"Correcting sample selection bias by unlabeled data," in Proc. Advances in
Neural Information Processing Systems Conf., 2006, pp. 601-608.
[24] S. Thrun, "Is learning the n-th thing any easier than learning the first?" in
Proc. Advances in Neural Information Processing Systems, 1996, pp. 640-646.
[25] G. Fei, S. Wang, and B. Liu, "Learning cumulatively to become more knowledgeable," in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, 2016, pp. 1565-1574.
[26] L. Fei-Fei, R. Fergus, and P. Perona, "One-shot learning of object categories," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 594-611, 2006.
[27] H. Larochelle, D. Erhan, and Y. Bengio, "Zero-data learning of new tasks,"
in Proc. AAAI Conf. Artificial Intelligence, 2008, vol. 1, p. 3.
[28] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell, "Zero-shot
learning with semantic output codes," in Proc. Advances in Neural Information
Processing Systems Conf., 2009, pp. 1410-1418.
[29] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, "Zero-shot learning
through cross-modal transfer," in Proc. Advances in Neural Information
Processing Systems Conf., 2013 pp. 935-943.
[30] B. Gong, Y. Shi, F. Sha, and K. Grauman, "Geodesic flow kernel for unsupervised domain adaptation," in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2012, pp. 2066-2073.
[31] J. Ni, Q. Qiu, and R. Chellappa, "Subspace interpolation via dictionary learning for unsupervised domain adaptation," in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2013, pp. 692-699.
[32] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, "Transfer joint matching for
unsupervised domain adaptation," in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2014, pp. 1410-1417.
[41] Y. Mansour, M. Mohri, and A. Rostamizadeh, "Domain adaptation with multiple sources," in Proc. Advances in Neural Information Processing Systems
Conf., 2009, pp. 1041-1048.
[42] R. Chattopadhyay, Q. Sun, W. Fan, I. Davidson, S. Panchanathan, and J. Ye,
"Multisource domain adaptation and its application to early detection of fatigue,"
ACM Trans. Knowledge Discovery Data, vol. 6, no. 4, pp. 18, 2012.
[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with
deep convolutional neural networks," in Proc. Advances in Neural Information
Processing Systems Conf., 2012, pp. 1097-1105.
[44] D. G. Lowe, "Object recognition from local scale-invariant features," in Proc.
IEEE Int. Conf. Computer Vision, 1999, vol. 2, pp. 1150-1157.
[45] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005, vol. 1,
pp. 886-893.
[46] B. Julesz, "Textons, the elements of texture perception, and their interactions," Nature, vol. 290, no. 5802, pp. 91-97, 1981.
[47] Y. Aytar and A. Zisserman, "Tabula rasa: Model transfer for object category
detection," in Proc. IEEE Int. Conf. Computer Vision, 2011, pp. 2252-2259.
[48] J. Hoffman, E. Rodner, J. Donahue, K. Saenko, and T. Darrell, "Efficient
learning of domain-invariant image representations," in Proc. Int. Conf. Learning
Representations, 2013.
[49] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, "Adapting visual category
models to new domains," in Proc. European Conf. Computer Vision, 2010, pp.
213-226.
[50] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, "Unsupervised
visual domain adaptation using subspace alignment," in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2013, pp. 2960-2967.
[51] B. Sun, J. Feng, and K. Saenko, "Return of frustratingly easy domain adaptation," in Proc. Conf. Artificial Intelligence (AAAI), 2016.
[52] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola, "A
kernel method for the two-sample-problem," in Proc. Advances in Neural
Information Processing Systems Conf., 2007, vol. 19, p. 513.
[53] L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank, "Domain transfer SVM for
video concept detection," in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2009, pp. 1375-1381.
[54] W.-S. Chu, F. De la Torre, and J. F. Cohn, "Selective transfer machine for
personalized facial action unit detection," in Proc. IEEE Conf. Comput. Vision
and Pattern Recognition, 2013, pp. 3515-3522.
[55] B. Gong, K. Grauman, and F. Sha, "Connecting the dots with landmarks:
Discriminatively learning domain-invariant features for unsupervised domain
adaptation," in Proc. ACM Int. Conf. Machine Learning, 2013, pp. 222-230.
[56] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, "Transfer feature learning
with joint distribution adaptation," in Proc. ACM Int. Conf. Machine Learning,
2013, pp. 2200-2207.
[57] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via
transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-
210, 2011.
[58] R. Gopalan, R. Li, and R. Chellappa, "Domain adaptation for object recognition: An unsupervised approach," in Proc. IEEE Int. Conf. Computer Vision,
2011, pp. 999-1006.
[59] O. Beijbom, "Domain adaptations for computer vision applications," arXiv
Preprint, arXiv:1211.4860, 2012.
[33] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
"Unsupervised pixel-level domain adaptation with generative adversarial networks," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2017.
[60] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, "Visual domain adaptation: A survey of recent advances," IEEE Signal Process. Mag., vol. 32, no. 3, pp.
53-69, 2015.
[34] H. Daumé III, A. Kumar, and A. Saha (2010). Frustratingly easy semi-supervised domain adaptation. Proc. Workshop on Domain Adaptation for NLP.
[Online]. Available: http://hal3.name/docs/#daume10easyss
[61] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman, "Learning
bounds for domain adaptation," in Proc. Advances in Neural Information
Processing Systems Conf., 2008, pp. 129-136.
[35] W. Li, L. Duan, D. Xu, and I. W. Tsang, "Learning with augmented features
for supervised and semi-supervised heterogeneous domain adaptation," IEEE
Trans. Pattern Analysis Machine Intell., vol. 36, no. 6, pp. 1134-1148, 2014.
[62] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan, "A theory of learning from different domains," Mach. Learn., vol. 79,
no. 1-2, pp. 151-175, 2010.
[36] T. Yao, Y. Pan, C.-W. Ngo, H. Li, and T. Mei, "Semi-supervised domain
adaptation with subspace learning for visual recognition," in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, 2015, pp. 2142-2150.
[63] M. Long, Y. Cao, J. Wang, and M. Jordan, "Learning transferable features
with deep adaptation networks," in Proc. ACM Int. Conf. Machine Learning,
2015, pp. 97-105.
128
IEEE SIGNAL PROCESSING MAGAZINE
|
November 2017
|
http://www.hal3.name/docs/#daume10easyss
Table of Contents for the Digital Edition of Signal Processing - November 2017
Signal Processing - November 2017 - Cover1
Signal Processing - November 2017 - Cover2
Signal Processing - November 2017 - 1
Signal Processing - November 2017 - 2
Signal Processing - November 2017 - 3
Signal Processing - November 2017 - 4
Signal Processing - November 2017 - 5
Signal Processing - November 2017 - 6
Signal Processing - November 2017 - 7
Signal Processing - November 2017 - 8
Signal Processing - November 2017 - 9
Signal Processing - November 2017 - 10
Signal Processing - November 2017 - 11
Signal Processing - November 2017 - 12
Signal Processing - November 2017 - 13
Signal Processing - November 2017 - 14
Signal Processing - November 2017 - 15
Signal Processing - November 2017 - 16
Signal Processing - November 2017 - 17
Signal Processing - November 2017 - 18
Signal Processing - November 2017 - 19
Signal Processing - November 2017 - 20
Signal Processing - November 2017 - 21
Signal Processing - November 2017 - 22
Signal Processing - November 2017 - 23
Signal Processing - November 2017 - 24
Signal Processing - November 2017 - 25
Signal Processing - November 2017 - 26
Signal Processing - November 2017 - 27
Signal Processing - November 2017 - 28
Signal Processing - November 2017 - 29
Signal Processing - November 2017 - 30
Signal Processing - November 2017 - 31
Signal Processing - November 2017 - 32
Signal Processing - November 2017 - 33
Signal Processing - November 2017 - 34
Signal Processing - November 2017 - 35
Signal Processing - November 2017 - 36
Signal Processing - November 2017 - 37
Signal Processing - November 2017 - 38
Signal Processing - November 2017 - 39
Signal Processing - November 2017 - 40
Signal Processing - November 2017 - 41
Signal Processing - November 2017 - 42
Signal Processing - November 2017 - 43
Signal Processing - November 2017 - 44
Signal Processing - November 2017 - 45
Signal Processing - November 2017 - 46
Signal Processing - November 2017 - 47
Signal Processing - November 2017 - 48
Signal Processing - November 2017 - 49
Signal Processing - November 2017 - 50
Signal Processing - November 2017 - 51
Signal Processing - November 2017 - 52
Signal Processing - November 2017 - 53
Signal Processing - November 2017 - 54
Signal Processing - November 2017 - 55
Signal Processing - November 2017 - 56
Signal Processing - November 2017 - 57
Signal Processing - November 2017 - 58
Signal Processing - November 2017 - 59
Signal Processing - November 2017 - 60
Signal Processing - November 2017 - 61
Signal Processing - November 2017 - 62
Signal Processing - November 2017 - 63
Signal Processing - November 2017 - 64
Signal Processing - November 2017 - 65
Signal Processing - November 2017 - 66
Signal Processing - November 2017 - 67
Signal Processing - November 2017 - 68
Signal Processing - November 2017 - 69
Signal Processing - November 2017 - 70
Signal Processing - November 2017 - 71
Signal Processing - November 2017 - 72
Signal Processing - November 2017 - 73
Signal Processing - November 2017 - 74
Signal Processing - November 2017 - 75
Signal Processing - November 2017 - 76
Signal Processing - November 2017 - 77
Signal Processing - November 2017 - 78
Signal Processing - November 2017 - 79
Signal Processing - November 2017 - 80
Signal Processing - November 2017 - 81
Signal Processing - November 2017 - 82
Signal Processing - November 2017 - 83
Signal Processing - November 2017 - 84
Signal Processing - November 2017 - 85
Signal Processing - November 2017 - 86
Signal Processing - November 2017 - 87
Signal Processing - November 2017 - 88
Signal Processing - November 2017 - 89
Signal Processing - November 2017 - 90
Signal Processing - November 2017 - 91
Signal Processing - November 2017 - 92
Signal Processing - November 2017 - 93
Signal Processing - November 2017 - 94
Signal Processing - November 2017 - 95
Signal Processing - November 2017 - 96
Signal Processing - November 2017 - 97
Signal Processing - November 2017 - 98
Signal Processing - November 2017 - 99
Signal Processing - November 2017 - 100
Signal Processing - November 2017 - 101
Signal Processing - November 2017 - 102
Signal Processing - November 2017 - 103
Signal Processing - November 2017 - 104
Signal Processing - November 2017 - 105
Signal Processing - November 2017 - 106
Signal Processing - November 2017 - 107
Signal Processing - November 2017 - 108
Signal Processing - November 2017 - 109
Signal Processing - November 2017 - 110
Signal Processing - November 2017 - 111
Signal Processing - November 2017 - 112
Signal Processing - November 2017 - 113
Signal Processing - November 2017 - 114
Signal Processing - November 2017 - 115
Signal Processing - November 2017 - 116
Signal Processing - November 2017 - 117
Signal Processing - November 2017 - 118
Signal Processing - November 2017 - 119
Signal Processing - November 2017 - 120
Signal Processing - November 2017 - 121
Signal Processing - November 2017 - 122
Signal Processing - November 2017 - 123
Signal Processing - November 2017 - 124
Signal Processing - November 2017 - 125
Signal Processing - November 2017 - 126
Signal Processing - November 2017 - 127
Signal Processing - November 2017 - 128
Signal Processing - November 2017 - 129
Signal Processing - November 2017 - 130
Signal Processing - November 2017 - 131
Signal Processing - November 2017 - 132
Signal Processing - November 2017 - 133
Signal Processing - November 2017 - 134
Signal Processing - November 2017 - 135
Signal Processing - November 2017 - 136
Signal Processing - November 2017 - 137
Signal Processing - November 2017 - 138
Signal Processing - November 2017 - 139
Signal Processing - November 2017 - 140
Signal Processing - November 2017 - 141
Signal Processing - November 2017 - 142
Signal Processing - November 2017 - 143
Signal Processing - November 2017 - 144
Signal Processing - November 2017 - 145
Signal Processing - November 2017 - 146
Signal Processing - November 2017 - 147
Signal Processing - November 2017 - 148
Signal Processing - November 2017 - 149
Signal Processing - November 2017 - 150
Signal Processing - November 2017 - 151
Signal Processing - November 2017 - 152
Signal Processing - November 2017 - 153
Signal Processing - November 2017 - 154
Signal Processing - November 2017 - 155
Signal Processing - November 2017 - 156
Signal Processing - November 2017 - 157
Signal Processing - November 2017 - 158
Signal Processing - November 2017 - 159
Signal Processing - November 2017 - 160
Signal Processing - November 2017 - 161
Signal Processing - November 2017 - 162
Signal Processing - November 2017 - 163
Signal Processing - November 2017 - 164
Signal Processing - November 2017 - 165
Signal Processing - November 2017 - 166
Signal Processing - November 2017 - 167
Signal Processing - November 2017 - 168
Signal Processing - November 2017 - 169
Signal Processing - November 2017 - 170
Signal Processing - November 2017 - 171
Signal Processing - November 2017 - 172
Signal Processing - November 2017 - 173
Signal Processing - November 2017 - 174
Signal Processing - November 2017 - 175
Signal Processing - November 2017 - 176
Signal Processing - November 2017 - Cover3
Signal Processing - November 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com