Signal Processing - November 2017 - 129
[64] B. Sun and K. Saenko, "Deep Coral: Correlation alignment for deep domain
adaptation," in Proc. European Conf. Computer Vision, 2016, pp. 443-450.
[90] D. P. Kingma and M. Welling, "Auto-encoding variational bayes," arXiv Preprint,
arXiv:1312.6114, 2013.
[65] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, "Deep
hashing network for unsupervised domain adaptation," in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2017.
[91] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation
with conditional adversarial networks," arXiv Preprint, arXiv:1611.07004,
2016.
[66] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features
off-the-shelf: an astounding baseline for recognition," in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2014, pp. 512-519.
[92] S. Chopra, S. Balakrishnan, and R. Gopalan, "DLID: Deep learning for domain
adaptation by interpolating between domains," in Proc. ICML Workshop on
Challenges in Representation Learning, 2013.
[67] ImageNet large scale visual recognition challenge 2013. [Online]. Available:
http://www.image-net.org/challenges/LSVRC/2013/
[93] J. Hu, J. Lu, and Y.-P. Tan, "Deep transfer metric learning," in Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, 2015, pp. 325-333.
[68] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features in deep neural networks?" in Proc. Advances in Neural Information
Processing Systems Conf., 2014, pp. 3320-3328.
[94] O. Sener, H. O. Song, A. Saxena, and S. Savarese, "Learning transferable representations for unsupervised domain adaptation," in Proc. Advances Neural
Information Processing Systems Conf., 2016, pp. 2110-2118.
[69] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring midlevel image representations using convolutional neural networks," in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2014, pp. 1717-1724.
[95] C. Sun, S. Shetty, R. Sukthankar, and R. Nevatia, "Temporal localization of finegrained actions in videos by domain transfer from web images," in Proc. ACM Int.
Conf. Multimedia, 2015, pp. 371-380.
[70] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
"DeCAF: A deep convolutional activation feature for generic visual recognition," in
Proc. ACM Int. Conf. Machine Learning, 2014, vol. 32, pp. 647-655.
[96] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan, "Domain
separation networks," in Proc. Advances in Neural Information Processing Systems
Conf., 2016, pp. 343-351.
[71] X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for large-scale sentiment classification: A deep learning approach," in Proc. ACM Int. Conf.
Machine Learning, 2011, pp. 513-520.
[97] H. Shimodaira, "Improving predictive inference under covariate shift by weighting
the log-likelihood function," J. Statist. Plan. Inference, vol. 90, no. 2, pp. 227-244,
2000.
[72] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, "Deep domain
confusion: Maximizing for domain invariance," arXiv Preprint, arXiv:1412.3474,
2014. [Online]. Available: http://arxiv.org/abs/1412.3474
[98] H. Venkateswara, S. Chakraborty, and S. Panchanathan, "Nonlinear embedding
transform for unsupervised domain adaptation," in Proc. European Conf. Computer
Vision Workshops, 2016, pp. 451-457.
[73] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, "Simultaneous deep transfer across domains and tasks," in Proc. IEEE Int. Conf. Computer Vision, 2015,
pp. 4068-4076.
[99] A. Torralba and A. A. Efros, "Unbiased look at data set bias," in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2011, pp. 1521-1528.
[74] A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K.
Fukumizu, and B. K. Sriperumbudur, "Optimal kernel choice for large-scale twosample tests," in Proc. Advances in Neural Information Processing Systems
Conf., 2012, pp. 1205-1213.
[75] M. Long, H. Zhu, J. Wang, and M. I. Jordan, "Unsupervised domain adaptation with residual transfer networks," in Proc. Advances in Neural Information
Processing Systems Conf., 2016, pp. 136-144.
[76] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
2016, pp. 770-778.
[77] C. Wu, W. Wen, T. Afzal, Y. Zhang, Y. Chen, and H. Li, "A compact DNN:
Approaching googlenet-level accuracy of classification and domain adaptation," in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2017.
[78] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li, "Deep reconstruction-classification networks for unsupervised domain adaptation," in Proc.
European Conf. Computer Vision, 2016, pp. 597-613.
[79] A. Rozantsev, M. Salzmann, and P. Fua, "Beyond sharing weights for deep
domain adaptation," arXiv Preprint, arXiv:1603.06432, 2016. [Online]. Available:
http://arxiv.org/abs/1603.06432
[80] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, "Generative adversarial nets," in Proc. Advances in Neural
Information Processing Systems Conf., 2014, pp. 2672-2680.
[100] T. Tommasi, M. Lanzi, P. Russo, and B. Caputo, "Learning the roots of visual
domain shift," in Proc. IEEE Int. Conf. Computer Vision Workshops, 2016, pp.
475-482.
[101] B. Gong, K. Grauman, and F. Sha, "Reshaping visual data sets for domain adaptation," in Proc. Advances in Neural Information Processing Systems Conf., 2013, pp.
1286-1294.
[102] K. Jarrett, K. Kavukcuoglu, Y. Lecun et al., "What is the best multi-stage architecture for object recognition?," in Proc. IEEE Int. Conf. Computer Vision, 2009, pp.
2146-2153.
[103] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, "The
extended cohn-kanade data set (CK+): A complete data set for action unit and emotionspecified expression," in Proc. IEEE Conf. Comput. Vision and Pattern Recognition
Workshops, 2010, pp. 94-101.
[104] M. Pantic, M. Valstar, R. Rademaker, and L. Maat, "Web-based database for
facial expression analysis," in Proc. IEEE Conf. Multimedia and Expo, 2005.
[105] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, "Reading digits in natural images with unsupervised feature learning," in Proc. Workshops
Advances in Neural Information Processing Systems Conf., 2011.
[106] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, et al. "Photo-realistic single image
-super-resolution using a generative adversarial network," arXiv Preprint,
arXiv:1609.04802, 2016. [Online]. Available: http://arxiv.org/abs/1609.04802
[81] Y. Taigman, A. Polyak, and L. Wolf, "Unsupervised cross-domain image
generation," in Proc. Int. Conf. Learning Representations, 2017.
[107] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, "Generative
adversarial text to image synthesis," in Proc. 33rd Int. Conf. Machine Learning, vol. 3,
2016, pp. 1060--1069.
[82] K. Kamnitsas, C. Baumgartner, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D.
Kane, D. K. Menon, A. Nori, A. Criminisi, D. Rueckert, et al., "Unsupervised domain
adaptation in brain lesion segmentation with adversarial networks," in Proc. Int. Conf.
Information Processing Medical Imaging, 2016, pp. 597-609.
[108] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas,
"StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial
networks," arXiv Preprint, arXiv:1612.03242, 2016. [Online]. Available: http://arxiv
.org/abs/1612.03242
[83] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, "Adversarial discriminative
domain adaptation," Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2017.
[109] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune, "Plug & play
generative networks: Conditional iterative generation of images in latent space," in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2017.
[84] X. Peng and K. Saenko, "Synthetic to real adaptation with deep generative
correlation alignment networks," arXiv Preprint, arXiv:1701.05524, 2017.
[110] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
"InfoGAN: Interpretable representation learning by information maximizing generative
adversarial nets," in Proc. Advances in Neural Information Processing Systems Conf.,
2016, pp. 2172-2180.
[85] P. Russo, F. M. Carlucci, T. Tommasi, and B. Caputo, "From source to target
and back: symmetric bi-directional adaptive GAN," arXiv Preprint, arXiv:1705.
08824, 2017.
[86] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, "Domain-adversarial training of neural networks," J. Mach. Learn. Res, vol. 17, no. 59, pp. 1-35, 2016.
[87] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand,
"Domain-adversarial neural networks," arXiv Preprint, arXiv:1412.4446, 2014.
[88] M.-Y. Liu and O. Tuzel, "Coupled generative adversarial networks," in Proc.
Advances in Neural Information Processing Systems Conf., 2016, pp. 469-477.
[89] M.-Y. Liu, T. Breuel, and J. Kautz, "Unsupervised image-to-image translation networks," arXiv Preprint, arXiv:1703.00848, 2017.
[111] H. Venkateswara, P. Lade, J. Ye, and S. Panchanathan, "Coupled support vector
machines for supervised domain adaptation," in Proc. ACM Int. Conf. Multimedia,
2015, pp. 1295-1298.
[112] M. Long, J. Wang, and M. I. Jordan, "Deep transfer learning with joint adaptation
networks," in Proc. 34th Int. Conf. Machine Learning, 2017, pp. 2208-2217.
[113] S. Panchanathan, T. McDaniel, and V. Balasubramanian, "Person-centered
accessible technologies: Improved usability and adaptation through inspirations from
disability research," in Proc. ACM Workshop User Experience in e-learning and
Augmented Technologies Education, 2012, pp. 1-6.
IEEE SIGNAL PROCESSING MAGAZINE
SP
|
November 2017
|
129
http://www.image-net.org/challenges/LSVRC/2013/
http://www.arxiv.org/abs/1412.3474
http://www.arxiv.org/abs/1603.06432
http://www.arxiv.org/abs/1609.04802
http://arxiv
Table of Contents for the Digital Edition of Signal Processing - November 2017
Signal Processing - November 2017 - Cover1
Signal Processing - November 2017 - Cover2
Signal Processing - November 2017 - 1
Signal Processing - November 2017 - 2
Signal Processing - November 2017 - 3
Signal Processing - November 2017 - 4
Signal Processing - November 2017 - 5
Signal Processing - November 2017 - 6
Signal Processing - November 2017 - 7
Signal Processing - November 2017 - 8
Signal Processing - November 2017 - 9
Signal Processing - November 2017 - 10
Signal Processing - November 2017 - 11
Signal Processing - November 2017 - 12
Signal Processing - November 2017 - 13
Signal Processing - November 2017 - 14
Signal Processing - November 2017 - 15
Signal Processing - November 2017 - 16
Signal Processing - November 2017 - 17
Signal Processing - November 2017 - 18
Signal Processing - November 2017 - 19
Signal Processing - November 2017 - 20
Signal Processing - November 2017 - 21
Signal Processing - November 2017 - 22
Signal Processing - November 2017 - 23
Signal Processing - November 2017 - 24
Signal Processing - November 2017 - 25
Signal Processing - November 2017 - 26
Signal Processing - November 2017 - 27
Signal Processing - November 2017 - 28
Signal Processing - November 2017 - 29
Signal Processing - November 2017 - 30
Signal Processing - November 2017 - 31
Signal Processing - November 2017 - 32
Signal Processing - November 2017 - 33
Signal Processing - November 2017 - 34
Signal Processing - November 2017 - 35
Signal Processing - November 2017 - 36
Signal Processing - November 2017 - 37
Signal Processing - November 2017 - 38
Signal Processing - November 2017 - 39
Signal Processing - November 2017 - 40
Signal Processing - November 2017 - 41
Signal Processing - November 2017 - 42
Signal Processing - November 2017 - 43
Signal Processing - November 2017 - 44
Signal Processing - November 2017 - 45
Signal Processing - November 2017 - 46
Signal Processing - November 2017 - 47
Signal Processing - November 2017 - 48
Signal Processing - November 2017 - 49
Signal Processing - November 2017 - 50
Signal Processing - November 2017 - 51
Signal Processing - November 2017 - 52
Signal Processing - November 2017 - 53
Signal Processing - November 2017 - 54
Signal Processing - November 2017 - 55
Signal Processing - November 2017 - 56
Signal Processing - November 2017 - 57
Signal Processing - November 2017 - 58
Signal Processing - November 2017 - 59
Signal Processing - November 2017 - 60
Signal Processing - November 2017 - 61
Signal Processing - November 2017 - 62
Signal Processing - November 2017 - 63
Signal Processing - November 2017 - 64
Signal Processing - November 2017 - 65
Signal Processing - November 2017 - 66
Signal Processing - November 2017 - 67
Signal Processing - November 2017 - 68
Signal Processing - November 2017 - 69
Signal Processing - November 2017 - 70
Signal Processing - November 2017 - 71
Signal Processing - November 2017 - 72
Signal Processing - November 2017 - 73
Signal Processing - November 2017 - 74
Signal Processing - November 2017 - 75
Signal Processing - November 2017 - 76
Signal Processing - November 2017 - 77
Signal Processing - November 2017 - 78
Signal Processing - November 2017 - 79
Signal Processing - November 2017 - 80
Signal Processing - November 2017 - 81
Signal Processing - November 2017 - 82
Signal Processing - November 2017 - 83
Signal Processing - November 2017 - 84
Signal Processing - November 2017 - 85
Signal Processing - November 2017 - 86
Signal Processing - November 2017 - 87
Signal Processing - November 2017 - 88
Signal Processing - November 2017 - 89
Signal Processing - November 2017 - 90
Signal Processing - November 2017 - 91
Signal Processing - November 2017 - 92
Signal Processing - November 2017 - 93
Signal Processing - November 2017 - 94
Signal Processing - November 2017 - 95
Signal Processing - November 2017 - 96
Signal Processing - November 2017 - 97
Signal Processing - November 2017 - 98
Signal Processing - November 2017 - 99
Signal Processing - November 2017 - 100
Signal Processing - November 2017 - 101
Signal Processing - November 2017 - 102
Signal Processing - November 2017 - 103
Signal Processing - November 2017 - 104
Signal Processing - November 2017 - 105
Signal Processing - November 2017 - 106
Signal Processing - November 2017 - 107
Signal Processing - November 2017 - 108
Signal Processing - November 2017 - 109
Signal Processing - November 2017 - 110
Signal Processing - November 2017 - 111
Signal Processing - November 2017 - 112
Signal Processing - November 2017 - 113
Signal Processing - November 2017 - 114
Signal Processing - November 2017 - 115
Signal Processing - November 2017 - 116
Signal Processing - November 2017 - 117
Signal Processing - November 2017 - 118
Signal Processing - November 2017 - 119
Signal Processing - November 2017 - 120
Signal Processing - November 2017 - 121
Signal Processing - November 2017 - 122
Signal Processing - November 2017 - 123
Signal Processing - November 2017 - 124
Signal Processing - November 2017 - 125
Signal Processing - November 2017 - 126
Signal Processing - November 2017 - 127
Signal Processing - November 2017 - 128
Signal Processing - November 2017 - 129
Signal Processing - November 2017 - 130
Signal Processing - November 2017 - 131
Signal Processing - November 2017 - 132
Signal Processing - November 2017 - 133
Signal Processing - November 2017 - 134
Signal Processing - November 2017 - 135
Signal Processing - November 2017 - 136
Signal Processing - November 2017 - 137
Signal Processing - November 2017 - 138
Signal Processing - November 2017 - 139
Signal Processing - November 2017 - 140
Signal Processing - November 2017 - 141
Signal Processing - November 2017 - 142
Signal Processing - November 2017 - 143
Signal Processing - November 2017 - 144
Signal Processing - November 2017 - 145
Signal Processing - November 2017 - 146
Signal Processing - November 2017 - 147
Signal Processing - November 2017 - 148
Signal Processing - November 2017 - 149
Signal Processing - November 2017 - 150
Signal Processing - November 2017 - 151
Signal Processing - November 2017 - 152
Signal Processing - November 2017 - 153
Signal Processing - November 2017 - 154
Signal Processing - November 2017 - 155
Signal Processing - November 2017 - 156
Signal Processing - November 2017 - 157
Signal Processing - November 2017 - 158
Signal Processing - November 2017 - 159
Signal Processing - November 2017 - 160
Signal Processing - November 2017 - 161
Signal Processing - November 2017 - 162
Signal Processing - November 2017 - 163
Signal Processing - November 2017 - 164
Signal Processing - November 2017 - 165
Signal Processing - November 2017 - 166
Signal Processing - November 2017 - 167
Signal Processing - November 2017 - 168
Signal Processing - November 2017 - 169
Signal Processing - November 2017 - 170
Signal Processing - November 2017 - 171
Signal Processing - November 2017 - 172
Signal Processing - November 2017 - 173
Signal Processing - November 2017 - 174
Signal Processing - November 2017 - 175
Signal Processing - November 2017 - 176
Signal Processing - November 2017 - Cover3
Signal Processing - November 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com