Signal Processing - November 2017 - 164
TIPS & TRICKS
Vicente Torres, Javier Valls,
and Richard Lyons
Fast- and Low-Complexity atan2(a,b) Approximation
T
his article presents a new entry to
the class of published algorithms
for the fast computation of the
arctangent of a complex number. Our
method uses a look-up table (LUT) to
reduce computational errors. We also
show how to convert a large-sized LUT
addressed by two variables to an equivalent-performance smaller-sized LUT
addressed by only one variable. In addition, we demonstrate how and why the
use of follow-on LUTs applied to other
simple arctan algorithms produce unexpected and interesting results.
Introduction
The computation of the arctangent function atan2(a,b), i.e., obtaining the angle of
a complex number c = b + ja, has been
the subject of extensive study because
this computation is needed in many applications, for example, in the frequency,
phase, and time synchronization stages
of digital communications, digital FM
demodulation, target tracking in wireless
sensor networks, and object recognition
in the field of image processing. From a
designer's point of view, it is useful to have
several computation choices since the performance requirements (speed, accuracy,
power consumption, etc.) may be different
depending on the specific application, and
one of those choices may be better suited
than others for a given application.
A h igh-spe ed comput at ion of
atan2(a,b) can be achieved with LUTs,
Digital Object Identifier 10.1109/MSP.2017.2730898
Date of publication: 13 November 2017
164
where the bit-level concatenation of a and
b are the values used to address the ROM
that stores the output of the function. The
LUT method is fast but much memory is
required when a decent arctangent accuracy is needed. Another popular option is
to use high-order algebraic polynomials,
like Chebyshev polynomials or the Taylor
series [1]. These methods give good precision, but since the arctangent is highly
nonlinear, they lead to long polynomials
and intensive computations. In other cases,
approximations based on rational functions are used [2]-[4], as they may provide
acceptable results with few computations.
The coordinated rotation digital computer
(CORDIC) algorithm, which requires only
shift and add operations, is frequently used
to compute the arctangent [1]. However, its
sequential nature makes it less adequate
when throughput speed is critical.
Instead of using a single complicated
equation to achieve high accuracy, as proposed by other authors, our proposal is a
two-stage process with a first stage that
uses a low-complexity coarse approximation and a second stage that improves
the accuracy by means of a small LUT
that stores precomputed error values (as
a function of the first stage output). Our
proposal computes a full-quadrant arctangent faster than other popular options
that achieve the same accuracy. We now
describe the two processing stages of our
proposed atan2(a,b) algorithm.
First stage
The idea behind this stage is to conceptually generate a continuous real-valued
IEEE SIGNAL PROCESSING MAGAZINE
|
November 2017
|
sinusoid p (t) that has the same initial
phase angle as the phase of our complex
number c = b + ja. If c = c e ji, that
sinusoid would be
p (t) = c · cos ` 2rt - i j, (1)
T
where t is time and T is the sinusoid's
period, as shown in Figure 1.
The reason we care about this p (t)
sinusoid is that the time location of p (t)'s
maximum value, t m in Figure 1, is proportional to the desired phase angle of
c = b + ja = c e ji. The relationship
between t m and i is found by setting the
time derivative of p (t) equal to zero and
solving for t m . Doing so gives us
t m = Ti .(2)
2r
The time-domain dimensions of
variables t m and T must, of course, be
identical. With no loss in generality, and
out of convenience, we assume the time
between the p [n] samples is unity. Thus
t m is measured in units and T = 4 units.
So when we use (2) to compute i, the
p [n]
a
|c |
0
-|c |
b
1 tm
-b p(t ) for c = b + ja
2
3
-a
n
(t )
FIGURE 1. The real-valued sequence p [n] and
continuous sinusoid p (t ) associated with a
given complex number c = c e ji.
1053-5888/17©2017IEEE
Table of Contents for the Digital Edition of Signal Processing - November 2017
Signal Processing - November 2017 - Cover1
Signal Processing - November 2017 - Cover2
Signal Processing - November 2017 - 1
Signal Processing - November 2017 - 2
Signal Processing - November 2017 - 3
Signal Processing - November 2017 - 4
Signal Processing - November 2017 - 5
Signal Processing - November 2017 - 6
Signal Processing - November 2017 - 7
Signal Processing - November 2017 - 8
Signal Processing - November 2017 - 9
Signal Processing - November 2017 - 10
Signal Processing - November 2017 - 11
Signal Processing - November 2017 - 12
Signal Processing - November 2017 - 13
Signal Processing - November 2017 - 14
Signal Processing - November 2017 - 15
Signal Processing - November 2017 - 16
Signal Processing - November 2017 - 17
Signal Processing - November 2017 - 18
Signal Processing - November 2017 - 19
Signal Processing - November 2017 - 20
Signal Processing - November 2017 - 21
Signal Processing - November 2017 - 22
Signal Processing - November 2017 - 23
Signal Processing - November 2017 - 24
Signal Processing - November 2017 - 25
Signal Processing - November 2017 - 26
Signal Processing - November 2017 - 27
Signal Processing - November 2017 - 28
Signal Processing - November 2017 - 29
Signal Processing - November 2017 - 30
Signal Processing - November 2017 - 31
Signal Processing - November 2017 - 32
Signal Processing - November 2017 - 33
Signal Processing - November 2017 - 34
Signal Processing - November 2017 - 35
Signal Processing - November 2017 - 36
Signal Processing - November 2017 - 37
Signal Processing - November 2017 - 38
Signal Processing - November 2017 - 39
Signal Processing - November 2017 - 40
Signal Processing - November 2017 - 41
Signal Processing - November 2017 - 42
Signal Processing - November 2017 - 43
Signal Processing - November 2017 - 44
Signal Processing - November 2017 - 45
Signal Processing - November 2017 - 46
Signal Processing - November 2017 - 47
Signal Processing - November 2017 - 48
Signal Processing - November 2017 - 49
Signal Processing - November 2017 - 50
Signal Processing - November 2017 - 51
Signal Processing - November 2017 - 52
Signal Processing - November 2017 - 53
Signal Processing - November 2017 - 54
Signal Processing - November 2017 - 55
Signal Processing - November 2017 - 56
Signal Processing - November 2017 - 57
Signal Processing - November 2017 - 58
Signal Processing - November 2017 - 59
Signal Processing - November 2017 - 60
Signal Processing - November 2017 - 61
Signal Processing - November 2017 - 62
Signal Processing - November 2017 - 63
Signal Processing - November 2017 - 64
Signal Processing - November 2017 - 65
Signal Processing - November 2017 - 66
Signal Processing - November 2017 - 67
Signal Processing - November 2017 - 68
Signal Processing - November 2017 - 69
Signal Processing - November 2017 - 70
Signal Processing - November 2017 - 71
Signal Processing - November 2017 - 72
Signal Processing - November 2017 - 73
Signal Processing - November 2017 - 74
Signal Processing - November 2017 - 75
Signal Processing - November 2017 - 76
Signal Processing - November 2017 - 77
Signal Processing - November 2017 - 78
Signal Processing - November 2017 - 79
Signal Processing - November 2017 - 80
Signal Processing - November 2017 - 81
Signal Processing - November 2017 - 82
Signal Processing - November 2017 - 83
Signal Processing - November 2017 - 84
Signal Processing - November 2017 - 85
Signal Processing - November 2017 - 86
Signal Processing - November 2017 - 87
Signal Processing - November 2017 - 88
Signal Processing - November 2017 - 89
Signal Processing - November 2017 - 90
Signal Processing - November 2017 - 91
Signal Processing - November 2017 - 92
Signal Processing - November 2017 - 93
Signal Processing - November 2017 - 94
Signal Processing - November 2017 - 95
Signal Processing - November 2017 - 96
Signal Processing - November 2017 - 97
Signal Processing - November 2017 - 98
Signal Processing - November 2017 - 99
Signal Processing - November 2017 - 100
Signal Processing - November 2017 - 101
Signal Processing - November 2017 - 102
Signal Processing - November 2017 - 103
Signal Processing - November 2017 - 104
Signal Processing - November 2017 - 105
Signal Processing - November 2017 - 106
Signal Processing - November 2017 - 107
Signal Processing - November 2017 - 108
Signal Processing - November 2017 - 109
Signal Processing - November 2017 - 110
Signal Processing - November 2017 - 111
Signal Processing - November 2017 - 112
Signal Processing - November 2017 - 113
Signal Processing - November 2017 - 114
Signal Processing - November 2017 - 115
Signal Processing - November 2017 - 116
Signal Processing - November 2017 - 117
Signal Processing - November 2017 - 118
Signal Processing - November 2017 - 119
Signal Processing - November 2017 - 120
Signal Processing - November 2017 - 121
Signal Processing - November 2017 - 122
Signal Processing - November 2017 - 123
Signal Processing - November 2017 - 124
Signal Processing - November 2017 - 125
Signal Processing - November 2017 - 126
Signal Processing - November 2017 - 127
Signal Processing - November 2017 - 128
Signal Processing - November 2017 - 129
Signal Processing - November 2017 - 130
Signal Processing - November 2017 - 131
Signal Processing - November 2017 - 132
Signal Processing - November 2017 - 133
Signal Processing - November 2017 - 134
Signal Processing - November 2017 - 135
Signal Processing - November 2017 - 136
Signal Processing - November 2017 - 137
Signal Processing - November 2017 - 138
Signal Processing - November 2017 - 139
Signal Processing - November 2017 - 140
Signal Processing - November 2017 - 141
Signal Processing - November 2017 - 142
Signal Processing - November 2017 - 143
Signal Processing - November 2017 - 144
Signal Processing - November 2017 - 145
Signal Processing - November 2017 - 146
Signal Processing - November 2017 - 147
Signal Processing - November 2017 - 148
Signal Processing - November 2017 - 149
Signal Processing - November 2017 - 150
Signal Processing - November 2017 - 151
Signal Processing - November 2017 - 152
Signal Processing - November 2017 - 153
Signal Processing - November 2017 - 154
Signal Processing - November 2017 - 155
Signal Processing - November 2017 - 156
Signal Processing - November 2017 - 157
Signal Processing - November 2017 - 158
Signal Processing - November 2017 - 159
Signal Processing - November 2017 - 160
Signal Processing - November 2017 - 161
Signal Processing - November 2017 - 162
Signal Processing - November 2017 - 163
Signal Processing - November 2017 - 164
Signal Processing - November 2017 - 165
Signal Processing - November 2017 - 166
Signal Processing - November 2017 - 167
Signal Processing - November 2017 - 168
Signal Processing - November 2017 - 169
Signal Processing - November 2017 - 170
Signal Processing - November 2017 - 171
Signal Processing - November 2017 - 172
Signal Processing - November 2017 - 173
Signal Processing - November 2017 - 174
Signal Processing - November 2017 - 175
Signal Processing - November 2017 - 176
Signal Processing - November 2017 - Cover3
Signal Processing - November 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com