IEEE Signal Processing Magazine - January 2018 - 141

of theoretical concepts, demonstrating real-time wide-band
spectrum sensing for CR from low-rate samples.

signal. Unfortunately, energy detection is very sensitive to
noise and performs poorly in low SNRs. This becomes even
more critical in sub-Nyquist regimes because the sensitivity of
CR challenges
energy detection is amplified due to noise aliasing [29]. ThereIn this article, we focus on CR spectrum sensing. In practice,
fore, this scheme fails to meet CR performance requirements
the information gathered from spectrum sensing is used to
in low SNRs. In contrast, matched-filter (MF) detection [30],
plan spectrum access by the unlicensed users. For completeness,
[31], which correlates a known waveform with the input signal
we first briefly review the main components and challenges of
to detect the presence of a transmission, is the optimal linear
this topic.
filter for maximizing SNR in the presence of additive stochasSpectrum analysis or management, which directly follows
tic noise. However, this technique requires perfect knowledge
spectrum sensing, ensures coexistence with PUs and other CRs.
of the potentially received transmission. When no a priori
The ambient RF environment is analyzed
knowledge can be assumed on the received
to characterize the behavior of PUs and the
signals' waveform, MF is difficult to impleIn practice, the
properties of the detected spectrum holes in
information gathered from ment. A compromise between both methterms of interference, duration of availabilods is cyclostationary detection [32], [33].
spectrum sensing is used
ity, and more. Then, spectrum access can be
This strategy is more robust for noise than
to plan spectrum access
optimized to maximize the CR throughput
energy detection but, at the same time, only
by the unlicensed users.
while maintaining interference caused to the
assumes that the signal of interest exhibits
licensed users below a target threshold [20].
cyclostationarity, which is a typical characSeveral techniques have been proposed to minimize interferteristic of communication signals. Consequently, cyclostationence to PUs as well as ensure the proper reception of secondary
ary detection is a natural candidate for spectrum sensing from
signals, such as waveform design and multicarrier approaches
sub-Nyquist samples in low SNRs.
[17], [20]. These are regrouped under the term spectrum sculptBesides noise, the task of spectrum sensing for CRs is furing [17]. Besides minimizing interference for the PUs, spectrum
ther complicated as a result of path loss, fading, and shadowing
sharing needs to be coordinated within the CR network. Vari[34]-[36]. These phenomena are due to the signal's propagaous power control and resource allocation schemes that deal
tion, which can be affected by obstacles and multipath and
with this issue are reviewed in [16] and [20]. Spectrum access
result in the attenuation of the signal's power. To overcome
further requires synchronization between the CR transmitter
these practical issues, collaborative CR networks have been
and receiver [20].
considered, where different users share their sensing results
The function of spectrum mobility ensures an adaptation
and cooperatively decide on the licensed spectrum occupancy.
to changes in the spectrum occupancy. When a licensed user
Cooperative spectrum sensing may be classified into three
starts accessing the channel currently being used by a CR,
catagories based on the way the data is shared by the CRs in
then the latter has to vacate the band and switch to another
the network: centralized, distributed, and relay assisted. In
free channel. This operation is referred to as a handoff [16],
each of these settings, two options of data fusion arise. The
[20]. The multicarrier transmission approach described previfirst is decision fusion, or hard decision, where the CRs only
ously in this section maintains uninterrupted communication
report their binary local decisions. The second is measurement
in such scenarios [17]. Additional issues of security against
fusion, or soft decision, where they share their samples [34].
malicious users and various attacks to the network are disCooperation has been shown to improve detection performance
cussed in [16], [19], and [20].
and relax sensitivity requirements by exploiting spatial diverWe now focus on spectrum sensing, which is the fundamensity [36], [37]. At the medium-access control level, cooperatal enabler to spectrum access. To increase the chance of findtion introduces the need for a tailored communication protocol
ing an unoccupied spectral band, CRs must sense a wide band
and a control channel [14], [15], which can be implemented as
of the spectrum. Nyquist rates of wide-band signals are high
a dedicated frequency channel or as an underlay ultrawide-band
and can even exceed today's best ADC front-end bandwidths.
channel [10]. These CR communication challenges are outside
Apart from that, such high sampling rates generate a large
the scope of this article.
number of samples to process, which consequently affects
Finally, CRs may require, or at least benefit from, joint specspeed and power consumption. To overcome the rate bottletrum sensing and direction-of-arrival (DOA) estimation. DOA
neck, several sampling methods have been proposed that leverrecovery enhances CR performance by allowing exploitation
age the a priori known received signal's structure, enabling
of vacant bands in space in addition to the frequency domain.
sampling reduction. These include the random demodulator
For example, a spectral band occupied by a PU situated in a
[22], [23], multirate sampling [24], multicoset sampling, and
certain direction with respect to the CR may be used by the
the modulated wide-band converter (MWC) [13], [25]-[27].
latter for transmission to the opposite direction, where receivThe CR then performs spectrum sensing on the acquired
ers do not sense the PU's signal. To jointly estimate the carrier
samples to detect PU transmissions. The simplest and most
frequencies and DOAs of the received transmissions, arrays of
common spectrum-sensing approach is energy detection [28],
sensors have been considered, and DOA recovery techniques,
which does not require any a priori knowledge on the input
such as multiple signal classification (MUSIC) [38], [39], the
IEEE SIGNAL PROCESSING MAGAZINE

|

January 2018

|

141



Table of Contents for the Digital Edition of IEEE Signal Processing Magazine - January 2018

Contents
IEEE Signal Processing Magazine - January 2018 - Cover1
IEEE Signal Processing Magazine - January 2018 - Cover2
IEEE Signal Processing Magazine - January 2018 - Contents
IEEE Signal Processing Magazine - January 2018 - 2
IEEE Signal Processing Magazine - January 2018 - 3
IEEE Signal Processing Magazine - January 2018 - 4
IEEE Signal Processing Magazine - January 2018 - 5
IEEE Signal Processing Magazine - January 2018 - 6
IEEE Signal Processing Magazine - January 2018 - 7
IEEE Signal Processing Magazine - January 2018 - 8
IEEE Signal Processing Magazine - January 2018 - 9
IEEE Signal Processing Magazine - January 2018 - 10
IEEE Signal Processing Magazine - January 2018 - 11
IEEE Signal Processing Magazine - January 2018 - 12
IEEE Signal Processing Magazine - January 2018 - 13
IEEE Signal Processing Magazine - January 2018 - 14
IEEE Signal Processing Magazine - January 2018 - 15
IEEE Signal Processing Magazine - January 2018 - 16
IEEE Signal Processing Magazine - January 2018 - 17
IEEE Signal Processing Magazine - January 2018 - 18
IEEE Signal Processing Magazine - January 2018 - 19
IEEE Signal Processing Magazine - January 2018 - 20
IEEE Signal Processing Magazine - January 2018 - 21
IEEE Signal Processing Magazine - January 2018 - 22
IEEE Signal Processing Magazine - January 2018 - 23
IEEE Signal Processing Magazine - January 2018 - 24
IEEE Signal Processing Magazine - January 2018 - 25
IEEE Signal Processing Magazine - January 2018 - 26
IEEE Signal Processing Magazine - January 2018 - 27
IEEE Signal Processing Magazine - January 2018 - 28
IEEE Signal Processing Magazine - January 2018 - 29
IEEE Signal Processing Magazine - January 2018 - 30
IEEE Signal Processing Magazine - January 2018 - 31
IEEE Signal Processing Magazine - January 2018 - 32
IEEE Signal Processing Magazine - January 2018 - 33
IEEE Signal Processing Magazine - January 2018 - 34
IEEE Signal Processing Magazine - January 2018 - 35
IEEE Signal Processing Magazine - January 2018 - 36
IEEE Signal Processing Magazine - January 2018 - 37
IEEE Signal Processing Magazine - January 2018 - 38
IEEE Signal Processing Magazine - January 2018 - 39
IEEE Signal Processing Magazine - January 2018 - 40
IEEE Signal Processing Magazine - January 2018 - 41
IEEE Signal Processing Magazine - January 2018 - 42
IEEE Signal Processing Magazine - January 2018 - 43
IEEE Signal Processing Magazine - January 2018 - 44
IEEE Signal Processing Magazine - January 2018 - 45
IEEE Signal Processing Magazine - January 2018 - 46
IEEE Signal Processing Magazine - January 2018 - 47
IEEE Signal Processing Magazine - January 2018 - 48
IEEE Signal Processing Magazine - January 2018 - 49
IEEE Signal Processing Magazine - January 2018 - 50
IEEE Signal Processing Magazine - January 2018 - 51
IEEE Signal Processing Magazine - January 2018 - 52
IEEE Signal Processing Magazine - January 2018 - 53
IEEE Signal Processing Magazine - January 2018 - 54
IEEE Signal Processing Magazine - January 2018 - 55
IEEE Signal Processing Magazine - January 2018 - 56
IEEE Signal Processing Magazine - January 2018 - 57
IEEE Signal Processing Magazine - January 2018 - 58
IEEE Signal Processing Magazine - January 2018 - 59
IEEE Signal Processing Magazine - January 2018 - 60
IEEE Signal Processing Magazine - January 2018 - 61
IEEE Signal Processing Magazine - January 2018 - 62
IEEE Signal Processing Magazine - January 2018 - 63
IEEE Signal Processing Magazine - January 2018 - 64
IEEE Signal Processing Magazine - January 2018 - 65
IEEE Signal Processing Magazine - January 2018 - 66
IEEE Signal Processing Magazine - January 2018 - 67
IEEE Signal Processing Magazine - January 2018 - 68
IEEE Signal Processing Magazine - January 2018 - 69
IEEE Signal Processing Magazine - January 2018 - 70
IEEE Signal Processing Magazine - January 2018 - 71
IEEE Signal Processing Magazine - January 2018 - 72
IEEE Signal Processing Magazine - January 2018 - 73
IEEE Signal Processing Magazine - January 2018 - 74
IEEE Signal Processing Magazine - January 2018 - 75
IEEE Signal Processing Magazine - January 2018 - 76
IEEE Signal Processing Magazine - January 2018 - 77
IEEE Signal Processing Magazine - January 2018 - 78
IEEE Signal Processing Magazine - January 2018 - 79
IEEE Signal Processing Magazine - January 2018 - 80
IEEE Signal Processing Magazine - January 2018 - 81
IEEE Signal Processing Magazine - January 2018 - 82
IEEE Signal Processing Magazine - January 2018 - 83
IEEE Signal Processing Magazine - January 2018 - 84
IEEE Signal Processing Magazine - January 2018 - 85
IEEE Signal Processing Magazine - January 2018 - 86
IEEE Signal Processing Magazine - January 2018 - 87
IEEE Signal Processing Magazine - January 2018 - 88
IEEE Signal Processing Magazine - January 2018 - 89
IEEE Signal Processing Magazine - January 2018 - 90
IEEE Signal Processing Magazine - January 2018 - 91
IEEE Signal Processing Magazine - January 2018 - 92
IEEE Signal Processing Magazine - January 2018 - 93
IEEE Signal Processing Magazine - January 2018 - 94
IEEE Signal Processing Magazine - January 2018 - 95
IEEE Signal Processing Magazine - January 2018 - 96
IEEE Signal Processing Magazine - January 2018 - 97
IEEE Signal Processing Magazine - January 2018 - 98
IEEE Signal Processing Magazine - January 2018 - 99
IEEE Signal Processing Magazine - January 2018 - 100
IEEE Signal Processing Magazine - January 2018 - 101
IEEE Signal Processing Magazine - January 2018 - 102
IEEE Signal Processing Magazine - January 2018 - 103
IEEE Signal Processing Magazine - January 2018 - 104
IEEE Signal Processing Magazine - January 2018 - 105
IEEE Signal Processing Magazine - January 2018 - 106
IEEE Signal Processing Magazine - January 2018 - 107
IEEE Signal Processing Magazine - January 2018 - 108
IEEE Signal Processing Magazine - January 2018 - 109
IEEE Signal Processing Magazine - January 2018 - 110
IEEE Signal Processing Magazine - January 2018 - 111
IEEE Signal Processing Magazine - January 2018 - 112
IEEE Signal Processing Magazine - January 2018 - 113
IEEE Signal Processing Magazine - January 2018 - 114
IEEE Signal Processing Magazine - January 2018 - 115
IEEE Signal Processing Magazine - January 2018 - 116
IEEE Signal Processing Magazine - January 2018 - 117
IEEE Signal Processing Magazine - January 2018 - 118
IEEE Signal Processing Magazine - January 2018 - 119
IEEE Signal Processing Magazine - January 2018 - 120
IEEE Signal Processing Magazine - January 2018 - 121
IEEE Signal Processing Magazine - January 2018 - 122
IEEE Signal Processing Magazine - January 2018 - 123
IEEE Signal Processing Magazine - January 2018 - 124
IEEE Signal Processing Magazine - January 2018 - 125
IEEE Signal Processing Magazine - January 2018 - 126
IEEE Signal Processing Magazine - January 2018 - 127
IEEE Signal Processing Magazine - January 2018 - 128
IEEE Signal Processing Magazine - January 2018 - 129
IEEE Signal Processing Magazine - January 2018 - 130
IEEE Signal Processing Magazine - January 2018 - 131
IEEE Signal Processing Magazine - January 2018 - 132
IEEE Signal Processing Magazine - January 2018 - 133
IEEE Signal Processing Magazine - January 2018 - 134
IEEE Signal Processing Magazine - January 2018 - 135
IEEE Signal Processing Magazine - January 2018 - 136
IEEE Signal Processing Magazine - January 2018 - 137
IEEE Signal Processing Magazine - January 2018 - 138
IEEE Signal Processing Magazine - January 2018 - 139
IEEE Signal Processing Magazine - January 2018 - 140
IEEE Signal Processing Magazine - January 2018 - 141
IEEE Signal Processing Magazine - January 2018 - 142
IEEE Signal Processing Magazine - January 2018 - 143
IEEE Signal Processing Magazine - January 2018 - 144
IEEE Signal Processing Magazine - January 2018 - 145
IEEE Signal Processing Magazine - January 2018 - 146
IEEE Signal Processing Magazine - January 2018 - 147
IEEE Signal Processing Magazine - January 2018 - 148
IEEE Signal Processing Magazine - January 2018 - 149
IEEE Signal Processing Magazine - January 2018 - 150
IEEE Signal Processing Magazine - January 2018 - 151
IEEE Signal Processing Magazine - January 2018 - 152
IEEE Signal Processing Magazine - January 2018 - 153
IEEE Signal Processing Magazine - January 2018 - 154
IEEE Signal Processing Magazine - January 2018 - 155
IEEE Signal Processing Magazine - January 2018 - 156
IEEE Signal Processing Magazine - January 2018 - 157
IEEE Signal Processing Magazine - January 2018 - 158
IEEE Signal Processing Magazine - January 2018 - 159
IEEE Signal Processing Magazine - January 2018 - 160
IEEE Signal Processing Magazine - January 2018 - 161
IEEE Signal Processing Magazine - January 2018 - 162
IEEE Signal Processing Magazine - January 2018 - 163
IEEE Signal Processing Magazine - January 2018 - 164
IEEE Signal Processing Magazine - January 2018 - 165
IEEE Signal Processing Magazine - January 2018 - 166
IEEE Signal Processing Magazine - January 2018 - 167
IEEE Signal Processing Magazine - January 2018 - 168
IEEE Signal Processing Magazine - January 2018 - 169
IEEE Signal Processing Magazine - January 2018 - 170
IEEE Signal Processing Magazine - January 2018 - 171
IEEE Signal Processing Magazine - January 2018 - 172
IEEE Signal Processing Magazine - January 2018 - 173
IEEE Signal Processing Magazine - January 2018 - 174
IEEE Signal Processing Magazine - January 2018 - 175
IEEE Signal Processing Magazine - January 2018 - 176
IEEE Signal Processing Magazine - January 2018 - 177
IEEE Signal Processing Magazine - January 2018 - 178
IEEE Signal Processing Magazine - January 2018 - 179
IEEE Signal Processing Magazine - January 2018 - 180
IEEE Signal Processing Magazine - January 2018 - Cover3
IEEE Signal Processing Magazine - January 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com