IEEE Signal Processing Magazine - January 2018 - 43

the filter. In these works, the last two max-pooling layers were
removed, and Atrous convolutions were used thereafter to ensure
a large receptive field. Note that it is not possible to remove all
max-pooling layers in the network, due to the memory requirements of processing images at full resolution. Other works have
learned more complex networks to upsample the low-resolution
output of an FCN: in [29] an additional "decoder" network is
learned, which progressively "unpools" the initial prediction to
obtain the final full-resolution output. Ghiasi and Fowlkes [30]
learn the basis functions with which to upsample in a coarse-tofine architecture.
Although many architectural innovations have been proposed to improve the segmentation accuracy of neural networks,
they have all benefited from additional refinement by a CRF.
Furthermore, as Table 1 shows, algorithms that have achieved
state-of-the-art results on public benchmarks such as Pascal
VOC [31] have all incorporated CRFs as part of the neural network and trained it jointly with the unary part of the network
end to end [8], [32], [33]. Similar trends are also being observed
on the Cityscapes [34] and ADE20k [35] data sets, which were
released in the last year. Intuitively, the improvement from these
approaches stems from the fact that the parameters of the unary
part of the network, and those of the CRF, may learn to optimally
cooperate with each other.
The rest of this article focuses on these approaches that combine CRFs and CNNs in an end-to-end differentiable network.
We elaborate on how mean-field inference of CRFs can be
unrolled and interpreted as a recurrent neural network (RNN)
in the section "CRFs as RNNs," and in the section "Learning
Arbitrary Potentials in CRFs," we describe other approaches that
enable arbitrary potentials to be learned.

Mean-field inference as a neural network
Chen et al. [5] showed that state-of-the-art semantic segmentation results could be achieved by using the output of an FCN as
the unary potentials of the DenseCRF model of [4]. However,
the CRF was used as postprocessing, and FCN parameters were
learned by backpropagation while CRF parameters were crossvalidated (the authors tried a large number of different CRF
parameters, and finally selected those which gave the highest
performance on a validation set).
This section details how mean-field inference of a DenseCRF
model can be incorporated into the neural network itself, as a
separate "mean-field inference module," an idea that was developed concurrently by Zheng et al. [7] and Schwing and Urtasun [45]. This enables joint training of both the CNN and CRF
parameters by backpropagation. Intuitively, we can expect better
results from this approach as the CNN and CRF learn parameters
which are compatible with each other due to the joint training.
The cross-validation strategy of other works, such as [5], cannot
update the parameters of the CNN such that they are optimal for
the chosen CRF parameters. Zheng et al. named their approach
CRF-as-RNN, and this achieved the best results when that paper
was published.
Mean-field is an iterative algorithm, and crucially for optimization via SGD, the derivative of the output with respect to

Table 1. Results of recent algorithms on the Pascal VOC 2012 test set.
Only the first submission, from 2012, does not use any deep learning.
All of the other methods use a base CNN architecture derived from an
ImageNet pretrained network. Evaluation is performed by a public
server on a withheld test-set. The performance metric is the
Intersection over Union (IoU) [31].
Method

IoU [%]

Base Network

47.8

-

SDS [37]

51.6

AlexNet

FCN [6]

67.2

VGG

Zoom-out [38]

69.6

VGG

DeepLab [5]

71.6

VGG

EdgeNet [39]

73.6

VGG

BoxSup [40]

75.2

VGG

Dilated Conv [27]

75.3

VGG

Centrale Boundaries [41]

75.7

VGG

DeepLab Attention [42]

76.3

VGG

LRR [30]

79.3

ResNet

DeepLab v2 [43]

79.7

ResNet

CRF as RNNs [7]

74.7

VGG

Deep Gaussian CRF [8]

75.5

VGG

Deep parsing network (DPN) [44]

77.5

VGG

Context [32]

77.8

VGG

Higher-order CRF [33]

77.9

VGG

Deep Gaussian CRF [8]

80.2

ResNet

Methods not using deep learning
O2P [36]
Methods not using a CRF

Methods using CRF for postprocessing

Methods with end-to-end CRFs

the input of each iteration can be calculated analytically. Therefore, we can unroll the inference algorithm across its time-steps,
and form an RNN [18]. An RNN is a type of neural network,
usually used to model sequential data, where the output of one
iteration is used as the input of the next iteration and all iterations share the same parameters. In this case, the sequence is
formed from the output of the iterative mean-field inference
algorithm on each time step. When training the network, we
can backpropagate through the RNN and into the previous
CNN to optimize all parameters jointly. Furthermore, as shown
in [7] and described next, for the DenseCRF model, the inference algorithm turns out to consist of standard CNN operations,
making its implementation simple and efficient in standard
neural network libraries. In the section "Incorporating HigherOrder Potentials," we describe how this idea can be extended
beyond DenseCRF to other types of potentials, while the section "Other Examples of Unrolling Inference Algorithms in
Neural Networks" mentions how the idea of unrolling inference
algorithms has subsequently been employed in other domains
using deep learning.

IEEE SIGNAL PROCESSING MAGAZINE

|

January 2018

|

43



Table of Contents for the Digital Edition of IEEE Signal Processing Magazine - January 2018

Contents
IEEE Signal Processing Magazine - January 2018 - Cover1
IEEE Signal Processing Magazine - January 2018 - Cover2
IEEE Signal Processing Magazine - January 2018 - Contents
IEEE Signal Processing Magazine - January 2018 - 2
IEEE Signal Processing Magazine - January 2018 - 3
IEEE Signal Processing Magazine - January 2018 - 4
IEEE Signal Processing Magazine - January 2018 - 5
IEEE Signal Processing Magazine - January 2018 - 6
IEEE Signal Processing Magazine - January 2018 - 7
IEEE Signal Processing Magazine - January 2018 - 8
IEEE Signal Processing Magazine - January 2018 - 9
IEEE Signal Processing Magazine - January 2018 - 10
IEEE Signal Processing Magazine - January 2018 - 11
IEEE Signal Processing Magazine - January 2018 - 12
IEEE Signal Processing Magazine - January 2018 - 13
IEEE Signal Processing Magazine - January 2018 - 14
IEEE Signal Processing Magazine - January 2018 - 15
IEEE Signal Processing Magazine - January 2018 - 16
IEEE Signal Processing Magazine - January 2018 - 17
IEEE Signal Processing Magazine - January 2018 - 18
IEEE Signal Processing Magazine - January 2018 - 19
IEEE Signal Processing Magazine - January 2018 - 20
IEEE Signal Processing Magazine - January 2018 - 21
IEEE Signal Processing Magazine - January 2018 - 22
IEEE Signal Processing Magazine - January 2018 - 23
IEEE Signal Processing Magazine - January 2018 - 24
IEEE Signal Processing Magazine - January 2018 - 25
IEEE Signal Processing Magazine - January 2018 - 26
IEEE Signal Processing Magazine - January 2018 - 27
IEEE Signal Processing Magazine - January 2018 - 28
IEEE Signal Processing Magazine - January 2018 - 29
IEEE Signal Processing Magazine - January 2018 - 30
IEEE Signal Processing Magazine - January 2018 - 31
IEEE Signal Processing Magazine - January 2018 - 32
IEEE Signal Processing Magazine - January 2018 - 33
IEEE Signal Processing Magazine - January 2018 - 34
IEEE Signal Processing Magazine - January 2018 - 35
IEEE Signal Processing Magazine - January 2018 - 36
IEEE Signal Processing Magazine - January 2018 - 37
IEEE Signal Processing Magazine - January 2018 - 38
IEEE Signal Processing Magazine - January 2018 - 39
IEEE Signal Processing Magazine - January 2018 - 40
IEEE Signal Processing Magazine - January 2018 - 41
IEEE Signal Processing Magazine - January 2018 - 42
IEEE Signal Processing Magazine - January 2018 - 43
IEEE Signal Processing Magazine - January 2018 - 44
IEEE Signal Processing Magazine - January 2018 - 45
IEEE Signal Processing Magazine - January 2018 - 46
IEEE Signal Processing Magazine - January 2018 - 47
IEEE Signal Processing Magazine - January 2018 - 48
IEEE Signal Processing Magazine - January 2018 - 49
IEEE Signal Processing Magazine - January 2018 - 50
IEEE Signal Processing Magazine - January 2018 - 51
IEEE Signal Processing Magazine - January 2018 - 52
IEEE Signal Processing Magazine - January 2018 - 53
IEEE Signal Processing Magazine - January 2018 - 54
IEEE Signal Processing Magazine - January 2018 - 55
IEEE Signal Processing Magazine - January 2018 - 56
IEEE Signal Processing Magazine - January 2018 - 57
IEEE Signal Processing Magazine - January 2018 - 58
IEEE Signal Processing Magazine - January 2018 - 59
IEEE Signal Processing Magazine - January 2018 - 60
IEEE Signal Processing Magazine - January 2018 - 61
IEEE Signal Processing Magazine - January 2018 - 62
IEEE Signal Processing Magazine - January 2018 - 63
IEEE Signal Processing Magazine - January 2018 - 64
IEEE Signal Processing Magazine - January 2018 - 65
IEEE Signal Processing Magazine - January 2018 - 66
IEEE Signal Processing Magazine - January 2018 - 67
IEEE Signal Processing Magazine - January 2018 - 68
IEEE Signal Processing Magazine - January 2018 - 69
IEEE Signal Processing Magazine - January 2018 - 70
IEEE Signal Processing Magazine - January 2018 - 71
IEEE Signal Processing Magazine - January 2018 - 72
IEEE Signal Processing Magazine - January 2018 - 73
IEEE Signal Processing Magazine - January 2018 - 74
IEEE Signal Processing Magazine - January 2018 - 75
IEEE Signal Processing Magazine - January 2018 - 76
IEEE Signal Processing Magazine - January 2018 - 77
IEEE Signal Processing Magazine - January 2018 - 78
IEEE Signal Processing Magazine - January 2018 - 79
IEEE Signal Processing Magazine - January 2018 - 80
IEEE Signal Processing Magazine - January 2018 - 81
IEEE Signal Processing Magazine - January 2018 - 82
IEEE Signal Processing Magazine - January 2018 - 83
IEEE Signal Processing Magazine - January 2018 - 84
IEEE Signal Processing Magazine - January 2018 - 85
IEEE Signal Processing Magazine - January 2018 - 86
IEEE Signal Processing Magazine - January 2018 - 87
IEEE Signal Processing Magazine - January 2018 - 88
IEEE Signal Processing Magazine - January 2018 - 89
IEEE Signal Processing Magazine - January 2018 - 90
IEEE Signal Processing Magazine - January 2018 - 91
IEEE Signal Processing Magazine - January 2018 - 92
IEEE Signal Processing Magazine - January 2018 - 93
IEEE Signal Processing Magazine - January 2018 - 94
IEEE Signal Processing Magazine - January 2018 - 95
IEEE Signal Processing Magazine - January 2018 - 96
IEEE Signal Processing Magazine - January 2018 - 97
IEEE Signal Processing Magazine - January 2018 - 98
IEEE Signal Processing Magazine - January 2018 - 99
IEEE Signal Processing Magazine - January 2018 - 100
IEEE Signal Processing Magazine - January 2018 - 101
IEEE Signal Processing Magazine - January 2018 - 102
IEEE Signal Processing Magazine - January 2018 - 103
IEEE Signal Processing Magazine - January 2018 - 104
IEEE Signal Processing Magazine - January 2018 - 105
IEEE Signal Processing Magazine - January 2018 - 106
IEEE Signal Processing Magazine - January 2018 - 107
IEEE Signal Processing Magazine - January 2018 - 108
IEEE Signal Processing Magazine - January 2018 - 109
IEEE Signal Processing Magazine - January 2018 - 110
IEEE Signal Processing Magazine - January 2018 - 111
IEEE Signal Processing Magazine - January 2018 - 112
IEEE Signal Processing Magazine - January 2018 - 113
IEEE Signal Processing Magazine - January 2018 - 114
IEEE Signal Processing Magazine - January 2018 - 115
IEEE Signal Processing Magazine - January 2018 - 116
IEEE Signal Processing Magazine - January 2018 - 117
IEEE Signal Processing Magazine - January 2018 - 118
IEEE Signal Processing Magazine - January 2018 - 119
IEEE Signal Processing Magazine - January 2018 - 120
IEEE Signal Processing Magazine - January 2018 - 121
IEEE Signal Processing Magazine - January 2018 - 122
IEEE Signal Processing Magazine - January 2018 - 123
IEEE Signal Processing Magazine - January 2018 - 124
IEEE Signal Processing Magazine - January 2018 - 125
IEEE Signal Processing Magazine - January 2018 - 126
IEEE Signal Processing Magazine - January 2018 - 127
IEEE Signal Processing Magazine - January 2018 - 128
IEEE Signal Processing Magazine - January 2018 - 129
IEEE Signal Processing Magazine - January 2018 - 130
IEEE Signal Processing Magazine - January 2018 - 131
IEEE Signal Processing Magazine - January 2018 - 132
IEEE Signal Processing Magazine - January 2018 - 133
IEEE Signal Processing Magazine - January 2018 - 134
IEEE Signal Processing Magazine - January 2018 - 135
IEEE Signal Processing Magazine - January 2018 - 136
IEEE Signal Processing Magazine - January 2018 - 137
IEEE Signal Processing Magazine - January 2018 - 138
IEEE Signal Processing Magazine - January 2018 - 139
IEEE Signal Processing Magazine - January 2018 - 140
IEEE Signal Processing Magazine - January 2018 - 141
IEEE Signal Processing Magazine - January 2018 - 142
IEEE Signal Processing Magazine - January 2018 - 143
IEEE Signal Processing Magazine - January 2018 - 144
IEEE Signal Processing Magazine - January 2018 - 145
IEEE Signal Processing Magazine - January 2018 - 146
IEEE Signal Processing Magazine - January 2018 - 147
IEEE Signal Processing Magazine - January 2018 - 148
IEEE Signal Processing Magazine - January 2018 - 149
IEEE Signal Processing Magazine - January 2018 - 150
IEEE Signal Processing Magazine - January 2018 - 151
IEEE Signal Processing Magazine - January 2018 - 152
IEEE Signal Processing Magazine - January 2018 - 153
IEEE Signal Processing Magazine - January 2018 - 154
IEEE Signal Processing Magazine - January 2018 - 155
IEEE Signal Processing Magazine - January 2018 - 156
IEEE Signal Processing Magazine - January 2018 - 157
IEEE Signal Processing Magazine - January 2018 - 158
IEEE Signal Processing Magazine - January 2018 - 159
IEEE Signal Processing Magazine - January 2018 - 160
IEEE Signal Processing Magazine - January 2018 - 161
IEEE Signal Processing Magazine - January 2018 - 162
IEEE Signal Processing Magazine - January 2018 - 163
IEEE Signal Processing Magazine - January 2018 - 164
IEEE Signal Processing Magazine - January 2018 - 165
IEEE Signal Processing Magazine - January 2018 - 166
IEEE Signal Processing Magazine - January 2018 - 167
IEEE Signal Processing Magazine - January 2018 - 168
IEEE Signal Processing Magazine - January 2018 - 169
IEEE Signal Processing Magazine - January 2018 - 170
IEEE Signal Processing Magazine - January 2018 - 171
IEEE Signal Processing Magazine - January 2018 - 172
IEEE Signal Processing Magazine - January 2018 - 173
IEEE Signal Processing Magazine - January 2018 - 174
IEEE Signal Processing Magazine - January 2018 - 175
IEEE Signal Processing Magazine - January 2018 - 176
IEEE Signal Processing Magazine - January 2018 - 177
IEEE Signal Processing Magazine - January 2018 - 178
IEEE Signal Processing Magazine - January 2018 - 179
IEEE Signal Processing Magazine - January 2018 - 180
IEEE Signal Processing Magazine - January 2018 - Cover3
IEEE Signal Processing Magazine - January 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com