IEEE Signal Processing Magazine - January 2018 - 59

asses the empirical "symptoms" that might be experienced
theoretical insight has motivated research into cost functions
during training. These symptoms include:
based on alternative distances. Several of these are explored
■ difficulties in getting the pair of models to converge [5]
in the section "Alternative Formulations."
■ the generative model "collapsing" to generate very similar samples for different inputs [25]
Training tricks
■ the discriminator loss converging quickly to zero [26], proOne of the first major improvements in the training of GANs
viding no reliable path for gradient updates to the generator.
for generating images were the DCGAN architectures proSeveral authors suggested heuristic approaches to address
posed by Radford et al. [5]. This work was the result of an
these issues [1], [25]; these are discussed in the next section.
extensive exploration of CNN architectures previously used
Early attempts to explain why GAN training is unstable
in computer vision, and it resulted in a set of guidelines
were proposed by Goodfellow and Salifor constructing and training both the
mans et al. [1], [25], who observed that
generator and discriminator. In the section
The representations
gradient descent methods typically used
"Convolutional GANs," we alluded to the
that can be learned by
for updating both the parameters of the
importance of strided and fractionally stridGANs may be used in a
generator and discriminator are inaped convolutions [27], which are key compovariety of applications,
propriate when the solution to the optinents of the architectural design. This allows
mization problem posed by GAN training
including image synthesis, both the generator and the discriminator to
actually constitutes a saddle point. Salilearn good upsampling and downsampling
semantic image editing,
mans et al. provided a simple example
operations, which may contribute to improvestyle transfer, image
that shows this [25]. However, stochastic
ments in the quality of image synthesis. More
superresolution, and
gradient descent is often used to update
specifically to training, batch normalization
classification.
neural networks and there are well-devel[28] was recommended for use in both netoped machine-learning programming
works to stabilize training in deeper models.
environments that make it easy to construct and update netAnother suggestion was to minimize the number of fully conworks using stochastic gradient descent.
nected layers used to increase the feasibility of training deeper
Although an early theoretical treatment [1] showed that the
models. Finally, Radford et al. [5] showed that using leaky recgenerator is optimal when p g (x) = p data (x), a very neat result
tifying linear units (ReLUs) activation functions between the
with a strong underlying intuition, the real data samples reside
intermediate layers of the discriminator gave superior perforon a manifold that sits in a high-dimensional space of possible
mance over using regular ReLUs.
representations. For instance, if color image samples are of
Later, Salimans et al. [25] proposed further heuristic
size N # N # 3 with pixel values [0, R +] 3, the space that may
approaches for stabilizing the training of GANs. The first, feabe represented-which we can call X -is of dimensionality
ture matching, changes the objective of the generator slightly
3N 2, with each dimension taking values between zero and the
to increase the amount of information available. Specifically,
maximum measurable pixel intensity. The data samples in the
the discriminator is still trained to distinguish between real and
support of p data, however, constitute the manifold of the real
fake samples, but the generator is now trained to match the disdata associated with some particular problem, typically occucriminator's expected intermediate activations (features) of its
pying a very small part of the total space, X. Similarly, the
fake samples with the expected intermediate activations of the
samples produced by the generator should also occupy only a
real samples. The second, minibatch discrimination, adds an
small portion of X.
extra input to the discriminator, which is a feature that encodes
Arjovsky et al. [26] showed that the support p g (x) and
the distance between a given sample in a minibatch and the
p data (x) lie in a lower-dimensional space than that correspondother samples. This is intended to prevent mode collapse, as
ing to X. The consequence of this is that p g (x) and p data (x)
the discriminator can easily tell if the generator is producing
may have no overlap, and so there exists a nearly trivial disthe same outputs.
criminator that is capable of distinguishing real samples,
A third trick, heuristic averaging, penalizes the network
x~p data (x) from fake samples, x~p g (x) with 100% accuracy.
parameters if they deviate from a running average of previIn this case, the discriminator error quickly converges to zero.
ous values, which can help convergence to an equilibrium. The
Parameters of the generator may only be updated via the disfourth, virtual batch normalization, reduces the dependency
criminator, so when this happens, the gradients used for updatof one sample on the other samples in the minibatch by caling parameters of the generator also converge to zero and may
culating the batch statistics for normalization with the sample
no longer be useful for updates to the generator. Arjovsky et
placed within a reference minibatch that is fixed at the beginal.'s explanations account for several of the symptoms related
ning of training.
to GAN training [26].
Finally, one-sided label smoothing makes the target for the
Goodfellow et al. [1] also showed that when D is optimal,
discriminator 0.9 instead of one, smoothing the discriminator's
training G is equivalent to minimizing the Jensen-Shannon
classification boundary, hence preventing an overly confident
(JS) divergence between p g (x) and p data (x) . If D is not optidiscriminator that would provide weak gradients for the genmal, the update may be less meaningful or inaccurate. This
erator. Sønderby et al. [29] advanced the idea of challenging
IEEE SIGNAL PROCESSING MAGAZINE

|

January 2018

|

59



Table of Contents for the Digital Edition of IEEE Signal Processing Magazine - January 2018

Contents
IEEE Signal Processing Magazine - January 2018 - Cover1
IEEE Signal Processing Magazine - January 2018 - Cover2
IEEE Signal Processing Magazine - January 2018 - Contents
IEEE Signal Processing Magazine - January 2018 - 2
IEEE Signal Processing Magazine - January 2018 - 3
IEEE Signal Processing Magazine - January 2018 - 4
IEEE Signal Processing Magazine - January 2018 - 5
IEEE Signal Processing Magazine - January 2018 - 6
IEEE Signal Processing Magazine - January 2018 - 7
IEEE Signal Processing Magazine - January 2018 - 8
IEEE Signal Processing Magazine - January 2018 - 9
IEEE Signal Processing Magazine - January 2018 - 10
IEEE Signal Processing Magazine - January 2018 - 11
IEEE Signal Processing Magazine - January 2018 - 12
IEEE Signal Processing Magazine - January 2018 - 13
IEEE Signal Processing Magazine - January 2018 - 14
IEEE Signal Processing Magazine - January 2018 - 15
IEEE Signal Processing Magazine - January 2018 - 16
IEEE Signal Processing Magazine - January 2018 - 17
IEEE Signal Processing Magazine - January 2018 - 18
IEEE Signal Processing Magazine - January 2018 - 19
IEEE Signal Processing Magazine - January 2018 - 20
IEEE Signal Processing Magazine - January 2018 - 21
IEEE Signal Processing Magazine - January 2018 - 22
IEEE Signal Processing Magazine - January 2018 - 23
IEEE Signal Processing Magazine - January 2018 - 24
IEEE Signal Processing Magazine - January 2018 - 25
IEEE Signal Processing Magazine - January 2018 - 26
IEEE Signal Processing Magazine - January 2018 - 27
IEEE Signal Processing Magazine - January 2018 - 28
IEEE Signal Processing Magazine - January 2018 - 29
IEEE Signal Processing Magazine - January 2018 - 30
IEEE Signal Processing Magazine - January 2018 - 31
IEEE Signal Processing Magazine - January 2018 - 32
IEEE Signal Processing Magazine - January 2018 - 33
IEEE Signal Processing Magazine - January 2018 - 34
IEEE Signal Processing Magazine - January 2018 - 35
IEEE Signal Processing Magazine - January 2018 - 36
IEEE Signal Processing Magazine - January 2018 - 37
IEEE Signal Processing Magazine - January 2018 - 38
IEEE Signal Processing Magazine - January 2018 - 39
IEEE Signal Processing Magazine - January 2018 - 40
IEEE Signal Processing Magazine - January 2018 - 41
IEEE Signal Processing Magazine - January 2018 - 42
IEEE Signal Processing Magazine - January 2018 - 43
IEEE Signal Processing Magazine - January 2018 - 44
IEEE Signal Processing Magazine - January 2018 - 45
IEEE Signal Processing Magazine - January 2018 - 46
IEEE Signal Processing Magazine - January 2018 - 47
IEEE Signal Processing Magazine - January 2018 - 48
IEEE Signal Processing Magazine - January 2018 - 49
IEEE Signal Processing Magazine - January 2018 - 50
IEEE Signal Processing Magazine - January 2018 - 51
IEEE Signal Processing Magazine - January 2018 - 52
IEEE Signal Processing Magazine - January 2018 - 53
IEEE Signal Processing Magazine - January 2018 - 54
IEEE Signal Processing Magazine - January 2018 - 55
IEEE Signal Processing Magazine - January 2018 - 56
IEEE Signal Processing Magazine - January 2018 - 57
IEEE Signal Processing Magazine - January 2018 - 58
IEEE Signal Processing Magazine - January 2018 - 59
IEEE Signal Processing Magazine - January 2018 - 60
IEEE Signal Processing Magazine - January 2018 - 61
IEEE Signal Processing Magazine - January 2018 - 62
IEEE Signal Processing Magazine - January 2018 - 63
IEEE Signal Processing Magazine - January 2018 - 64
IEEE Signal Processing Magazine - January 2018 - 65
IEEE Signal Processing Magazine - January 2018 - 66
IEEE Signal Processing Magazine - January 2018 - 67
IEEE Signal Processing Magazine - January 2018 - 68
IEEE Signal Processing Magazine - January 2018 - 69
IEEE Signal Processing Magazine - January 2018 - 70
IEEE Signal Processing Magazine - January 2018 - 71
IEEE Signal Processing Magazine - January 2018 - 72
IEEE Signal Processing Magazine - January 2018 - 73
IEEE Signal Processing Magazine - January 2018 - 74
IEEE Signal Processing Magazine - January 2018 - 75
IEEE Signal Processing Magazine - January 2018 - 76
IEEE Signal Processing Magazine - January 2018 - 77
IEEE Signal Processing Magazine - January 2018 - 78
IEEE Signal Processing Magazine - January 2018 - 79
IEEE Signal Processing Magazine - January 2018 - 80
IEEE Signal Processing Magazine - January 2018 - 81
IEEE Signal Processing Magazine - January 2018 - 82
IEEE Signal Processing Magazine - January 2018 - 83
IEEE Signal Processing Magazine - January 2018 - 84
IEEE Signal Processing Magazine - January 2018 - 85
IEEE Signal Processing Magazine - January 2018 - 86
IEEE Signal Processing Magazine - January 2018 - 87
IEEE Signal Processing Magazine - January 2018 - 88
IEEE Signal Processing Magazine - January 2018 - 89
IEEE Signal Processing Magazine - January 2018 - 90
IEEE Signal Processing Magazine - January 2018 - 91
IEEE Signal Processing Magazine - January 2018 - 92
IEEE Signal Processing Magazine - January 2018 - 93
IEEE Signal Processing Magazine - January 2018 - 94
IEEE Signal Processing Magazine - January 2018 - 95
IEEE Signal Processing Magazine - January 2018 - 96
IEEE Signal Processing Magazine - January 2018 - 97
IEEE Signal Processing Magazine - January 2018 - 98
IEEE Signal Processing Magazine - January 2018 - 99
IEEE Signal Processing Magazine - January 2018 - 100
IEEE Signal Processing Magazine - January 2018 - 101
IEEE Signal Processing Magazine - January 2018 - 102
IEEE Signal Processing Magazine - January 2018 - 103
IEEE Signal Processing Magazine - January 2018 - 104
IEEE Signal Processing Magazine - January 2018 - 105
IEEE Signal Processing Magazine - January 2018 - 106
IEEE Signal Processing Magazine - January 2018 - 107
IEEE Signal Processing Magazine - January 2018 - 108
IEEE Signal Processing Magazine - January 2018 - 109
IEEE Signal Processing Magazine - January 2018 - 110
IEEE Signal Processing Magazine - January 2018 - 111
IEEE Signal Processing Magazine - January 2018 - 112
IEEE Signal Processing Magazine - January 2018 - 113
IEEE Signal Processing Magazine - January 2018 - 114
IEEE Signal Processing Magazine - January 2018 - 115
IEEE Signal Processing Magazine - January 2018 - 116
IEEE Signal Processing Magazine - January 2018 - 117
IEEE Signal Processing Magazine - January 2018 - 118
IEEE Signal Processing Magazine - January 2018 - 119
IEEE Signal Processing Magazine - January 2018 - 120
IEEE Signal Processing Magazine - January 2018 - 121
IEEE Signal Processing Magazine - January 2018 - 122
IEEE Signal Processing Magazine - January 2018 - 123
IEEE Signal Processing Magazine - January 2018 - 124
IEEE Signal Processing Magazine - January 2018 - 125
IEEE Signal Processing Magazine - January 2018 - 126
IEEE Signal Processing Magazine - January 2018 - 127
IEEE Signal Processing Magazine - January 2018 - 128
IEEE Signal Processing Magazine - January 2018 - 129
IEEE Signal Processing Magazine - January 2018 - 130
IEEE Signal Processing Magazine - January 2018 - 131
IEEE Signal Processing Magazine - January 2018 - 132
IEEE Signal Processing Magazine - January 2018 - 133
IEEE Signal Processing Magazine - January 2018 - 134
IEEE Signal Processing Magazine - January 2018 - 135
IEEE Signal Processing Magazine - January 2018 - 136
IEEE Signal Processing Magazine - January 2018 - 137
IEEE Signal Processing Magazine - January 2018 - 138
IEEE Signal Processing Magazine - January 2018 - 139
IEEE Signal Processing Magazine - January 2018 - 140
IEEE Signal Processing Magazine - January 2018 - 141
IEEE Signal Processing Magazine - January 2018 - 142
IEEE Signal Processing Magazine - January 2018 - 143
IEEE Signal Processing Magazine - January 2018 - 144
IEEE Signal Processing Magazine - January 2018 - 145
IEEE Signal Processing Magazine - January 2018 - 146
IEEE Signal Processing Magazine - January 2018 - 147
IEEE Signal Processing Magazine - January 2018 - 148
IEEE Signal Processing Magazine - January 2018 - 149
IEEE Signal Processing Magazine - January 2018 - 150
IEEE Signal Processing Magazine - January 2018 - 151
IEEE Signal Processing Magazine - January 2018 - 152
IEEE Signal Processing Magazine - January 2018 - 153
IEEE Signal Processing Magazine - January 2018 - 154
IEEE Signal Processing Magazine - January 2018 - 155
IEEE Signal Processing Magazine - January 2018 - 156
IEEE Signal Processing Magazine - January 2018 - 157
IEEE Signal Processing Magazine - January 2018 - 158
IEEE Signal Processing Magazine - January 2018 - 159
IEEE Signal Processing Magazine - January 2018 - 160
IEEE Signal Processing Magazine - January 2018 - 161
IEEE Signal Processing Magazine - January 2018 - 162
IEEE Signal Processing Magazine - January 2018 - 163
IEEE Signal Processing Magazine - January 2018 - 164
IEEE Signal Processing Magazine - January 2018 - 165
IEEE Signal Processing Magazine - January 2018 - 166
IEEE Signal Processing Magazine - January 2018 - 167
IEEE Signal Processing Magazine - January 2018 - 168
IEEE Signal Processing Magazine - January 2018 - 169
IEEE Signal Processing Magazine - January 2018 - 170
IEEE Signal Processing Magazine - January 2018 - 171
IEEE Signal Processing Magazine - January 2018 - 172
IEEE Signal Processing Magazine - January 2018 - 173
IEEE Signal Processing Magazine - January 2018 - 174
IEEE Signal Processing Magazine - January 2018 - 175
IEEE Signal Processing Magazine - January 2018 - 176
IEEE Signal Processing Magazine - January 2018 - 177
IEEE Signal Processing Magazine - January 2018 - 178
IEEE Signal Processing Magazine - January 2018 - 179
IEEE Signal Processing Magazine - January 2018 - 180
IEEE Signal Processing Magazine - January 2018 - Cover3
IEEE Signal Processing Magazine - January 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com