IEEE Signal Processing - March 2018 - 106
Number of Traces
Number of Traces
unaligned CCFs. From the relative time delays, updated first
breaks are calculated.
4) Align each CCF, and sum the aligned CCFs to produce a
stacked CCF.
5) Modify the unstacked and unaligned CCFs by cross correlating with the stacked CCF.
6) Terminate when the sum of squares error is acceptable; otherwise, go to step 3.
The aforementioned steps are carried out for S-arrivals and then
for P-arrivals (after muting the S-arrivals). An example is shown
in Figure 8.
A different strategy for time picking is to admit that some fraction of the picks will be false and then use a classifier to find the
true picks for the event. Such a classifier needs to learn the pattern of a seismic event from all arrival-time picks and apply a rule
to cluster the picks into two groups: true event and false picks.
The noisy picks are discarded, so the classifier performs a type
of denoising, although, strictly speaking, this is not denoising of
the signal. Since the true first-arrival times of any isolated seismic event result in a predictable moveout curve on a monitoring
receiver array, a parametric model for valid moveouts can be used
to build a classifier for true picks of an actual seismic event.
In seismology, it is well known that, for homogeneous media,
the moveout curve across a linear array is a hyperbola. To utilize
this prior knowledge, a random sample consensus (RANSAC)based [17], [30] arrival-time event clustering method has been
developed to classify the events and nonevents in the picks. In a
RANSAC-based method, two steps, i.e., hypothesize and test, are
implemented iteratively as follows:
■ Hypothesize: A minimal sample subset (MinSet, denoted as
X kM) is randomly selected from the data set, and the unique
model parameters (i k) are computed for this chosen MinSet
for kth iteration.
5
0
500
1,000
1,500
2,000
Number of Samples
(a)
2,500
P-Arrival
S-Arrival
10
5
0
0
500
1,000
1,500
2,000
Number of Samples
(b)
2,500
Figure 8. (a) Noisy traces [the original waveform is the same as in Figure 5(a)], where SNR = -2.53 dB and (b) picked P- and S-arrivals together
with original traces. (Figure used with permission from [22].)
106
a b/2 d/2 x
P (x, y, t; i) = 6x y t@ >b/2 c e/2H >yH
d/2 e/2 f t
x
+ 6g h i@ >yH + j = 0.
t
(8)
The RANSAC framework finds the parameter vector i =
[a, f, i] T in a ten-dimensional space. Since each hypothesis
and test step is numerically inexpensive, we can run this alternating scheme for a large number of iterations so that a good
minimal subset (containing all event picks) can be picked with
high probability.
The method has been tested on a data set of 50 s collected by
the Long Beach nodal dense array in Southern California, which
contains 5,200 sensors [40], [41]. Figure 9(a) shows the top view
of the dense sensor array with the event location marked in red.
In (b), the 3-D view is shown with all arrival time picks indicated
by using open circles. Using the RANSAC-based classification
approach, the true picks are successfully selected from all of the
picks, and the optimal hyperbolic surface is delineated using a
red mesh.
Source mechanism-based detection, localization,
and moment tensor estimation
10
0
Test: All elements in the entire data set (X D) are checked to
determine which ones can be labeled as inliers, i.e., consistent with the hypothesized model in the sense that the distance from the model's moveout curve is less than some
prescribed value (d) . The set of all such inliers is called a
consensus set (ConSet, denoted as X kC) .
For a surface array, the proposed method must try to fit
an underlying hyperbolic surface from the set of time picks
{(x n, y n, t n)} for n = 1, f, N, where x n and y n indicate the spatial locations of the corresponding sensor. The surface can be
defined using a quadratic equation in (x, y, t) that takes the following general form:
■
As discussed in the "Introduction" section, microseismic monitoring from large arrays using migration-based detection and
location techniques is subject to selecting a threshold that
results in a constant rate of false positives, i.e., detection of
random noise interpreted as real events. This threshold, which
depends on SNR, is commonly applied to the stacked trace to
identify a true event, assuming a consistent SNR across the
array. However, an abnormal value of SNR in a stacked trace
may result from a sudden change of noise on a few receivers,
e.g., when a car drives by or when the well head of a monitoring borehole is hit. To differentiate between such nonstationary noise and a true signal, we can measure the coherency
of the signal across the array along the expected moveout. A
noise burst in part of the monitoring array would show low
coherency across the array while a true signal should show
high coherency. Thus semblance, which is a measure of coherency, is used as an additional differentiator between true signals and false positives.
IEEE Signal Processing Magazine
|
March 2018
|
Table of Contents for the Digital Edition of IEEE Signal Processing - March 2018
Contents
IEEE Signal Processing - March 2018 - Cover1
IEEE Signal Processing - March 2018 - Cover2
IEEE Signal Processing - March 2018 - Contents
IEEE Signal Processing - March 2018 - 2
IEEE Signal Processing - March 2018 - 3
IEEE Signal Processing - March 2018 - 4
IEEE Signal Processing - March 2018 - 5
IEEE Signal Processing - March 2018 - 6
IEEE Signal Processing - March 2018 - 7
IEEE Signal Processing - March 2018 - 8
IEEE Signal Processing - March 2018 - 9
IEEE Signal Processing - March 2018 - 10
IEEE Signal Processing - March 2018 - 11
IEEE Signal Processing - March 2018 - 12
IEEE Signal Processing - March 2018 - 13
IEEE Signal Processing - March 2018 - 14
IEEE Signal Processing - March 2018 - 15
IEEE Signal Processing - March 2018 - 16
IEEE Signal Processing - March 2018 - 17
IEEE Signal Processing - March 2018 - 18
IEEE Signal Processing - March 2018 - 19
IEEE Signal Processing - March 2018 - 20
IEEE Signal Processing - March 2018 - 21
IEEE Signal Processing - March 2018 - 22
IEEE Signal Processing - March 2018 - 23
IEEE Signal Processing - March 2018 - 24
IEEE Signal Processing - March 2018 - 25
IEEE Signal Processing - March 2018 - 26
IEEE Signal Processing - March 2018 - 27
IEEE Signal Processing - March 2018 - 28
IEEE Signal Processing - March 2018 - 29
IEEE Signal Processing - March 2018 - 30
IEEE Signal Processing - March 2018 - 31
IEEE Signal Processing - March 2018 - 32
IEEE Signal Processing - March 2018 - 33
IEEE Signal Processing - March 2018 - 34
IEEE Signal Processing - March 2018 - 35
IEEE Signal Processing - March 2018 - 36
IEEE Signal Processing - March 2018 - 37
IEEE Signal Processing - March 2018 - 38
IEEE Signal Processing - March 2018 - 39
IEEE Signal Processing - March 2018 - 40
IEEE Signal Processing - March 2018 - 41
IEEE Signal Processing - March 2018 - 42
IEEE Signal Processing - March 2018 - 43
IEEE Signal Processing - March 2018 - 44
IEEE Signal Processing - March 2018 - 45
IEEE Signal Processing - March 2018 - 46
IEEE Signal Processing - March 2018 - 47
IEEE Signal Processing - March 2018 - 48
IEEE Signal Processing - March 2018 - 49
IEEE Signal Processing - March 2018 - 50
IEEE Signal Processing - March 2018 - 51
IEEE Signal Processing - March 2018 - 52
IEEE Signal Processing - March 2018 - 53
IEEE Signal Processing - March 2018 - 54
IEEE Signal Processing - March 2018 - 55
IEEE Signal Processing - March 2018 - 56
IEEE Signal Processing - March 2018 - 57
IEEE Signal Processing - March 2018 - 58
IEEE Signal Processing - March 2018 - 59
IEEE Signal Processing - March 2018 - 60
IEEE Signal Processing - March 2018 - 61
IEEE Signal Processing - March 2018 - 62
IEEE Signal Processing - March 2018 - 63
IEEE Signal Processing - March 2018 - 64
IEEE Signal Processing - March 2018 - 65
IEEE Signal Processing - March 2018 - 66
IEEE Signal Processing - March 2018 - 67
IEEE Signal Processing - March 2018 - 68
IEEE Signal Processing - March 2018 - 69
IEEE Signal Processing - March 2018 - 70
IEEE Signal Processing - March 2018 - 71
IEEE Signal Processing - March 2018 - 72
IEEE Signal Processing - March 2018 - 73
IEEE Signal Processing - March 2018 - 74
IEEE Signal Processing - March 2018 - 75
IEEE Signal Processing - March 2018 - 76
IEEE Signal Processing - March 2018 - 77
IEEE Signal Processing - March 2018 - 78
IEEE Signal Processing - March 2018 - 79
IEEE Signal Processing - March 2018 - 80
IEEE Signal Processing - March 2018 - 81
IEEE Signal Processing - March 2018 - 82
IEEE Signal Processing - March 2018 - 83
IEEE Signal Processing - March 2018 - 84
IEEE Signal Processing - March 2018 - 85
IEEE Signal Processing - March 2018 - 86
IEEE Signal Processing - March 2018 - 87
IEEE Signal Processing - March 2018 - 88
IEEE Signal Processing - March 2018 - 89
IEEE Signal Processing - March 2018 - 90
IEEE Signal Processing - March 2018 - 91
IEEE Signal Processing - March 2018 - 92
IEEE Signal Processing - March 2018 - 93
IEEE Signal Processing - March 2018 - 94
IEEE Signal Processing - March 2018 - 95
IEEE Signal Processing - March 2018 - 96
IEEE Signal Processing - March 2018 - 97
IEEE Signal Processing - March 2018 - 98
IEEE Signal Processing - March 2018 - 99
IEEE Signal Processing - March 2018 - 100
IEEE Signal Processing - March 2018 - 101
IEEE Signal Processing - March 2018 - 102
IEEE Signal Processing - March 2018 - 103
IEEE Signal Processing - March 2018 - 104
IEEE Signal Processing - March 2018 - 105
IEEE Signal Processing - March 2018 - 106
IEEE Signal Processing - March 2018 - 107
IEEE Signal Processing - March 2018 - 108
IEEE Signal Processing - March 2018 - 109
IEEE Signal Processing - March 2018 - 110
IEEE Signal Processing - March 2018 - 111
IEEE Signal Processing - March 2018 - 112
IEEE Signal Processing - March 2018 - 113
IEEE Signal Processing - March 2018 - 114
IEEE Signal Processing - March 2018 - 115
IEEE Signal Processing - March 2018 - 116
IEEE Signal Processing - March 2018 - 117
IEEE Signal Processing - March 2018 - 118
IEEE Signal Processing - March 2018 - 119
IEEE Signal Processing - March 2018 - 120
IEEE Signal Processing - March 2018 - 121
IEEE Signal Processing - March 2018 - 122
IEEE Signal Processing - March 2018 - 123
IEEE Signal Processing - March 2018 - 124
IEEE Signal Processing - March 2018 - 125
IEEE Signal Processing - March 2018 - 126
IEEE Signal Processing - March 2018 - 127
IEEE Signal Processing - March 2018 - 128
IEEE Signal Processing - March 2018 - 129
IEEE Signal Processing - March 2018 - 130
IEEE Signal Processing - March 2018 - 131
IEEE Signal Processing - March 2018 - 132
IEEE Signal Processing - March 2018 - 133
IEEE Signal Processing - March 2018 - 134
IEEE Signal Processing - March 2018 - 135
IEEE Signal Processing - March 2018 - 136
IEEE Signal Processing - March 2018 - 137
IEEE Signal Processing - March 2018 - 138
IEEE Signal Processing - March 2018 - 139
IEEE Signal Processing - March 2018 - 140
IEEE Signal Processing - March 2018 - 141
IEEE Signal Processing - March 2018 - 142
IEEE Signal Processing - March 2018 - 143
IEEE Signal Processing - March 2018 - 144
IEEE Signal Processing - March 2018 - 145
IEEE Signal Processing - March 2018 - 146
IEEE Signal Processing - March 2018 - 147
IEEE Signal Processing - March 2018 - 148
IEEE Signal Processing - March 2018 - 149
IEEE Signal Processing - March 2018 - 150
IEEE Signal Processing - March 2018 - 151
IEEE Signal Processing - March 2018 - 152
IEEE Signal Processing - March 2018 - 153
IEEE Signal Processing - March 2018 - 154
IEEE Signal Processing - March 2018 - 155
IEEE Signal Processing - March 2018 - 156
IEEE Signal Processing - March 2018 - 157
IEEE Signal Processing - March 2018 - 158
IEEE Signal Processing - March 2018 - 159
IEEE Signal Processing - March 2018 - 160
IEEE Signal Processing - March 2018 - 161
IEEE Signal Processing - March 2018 - 162
IEEE Signal Processing - March 2018 - 163
IEEE Signal Processing - March 2018 - 164
IEEE Signal Processing - March 2018 - 165
IEEE Signal Processing - March 2018 - 166
IEEE Signal Processing - March 2018 - 167
IEEE Signal Processing - March 2018 - 168
IEEE Signal Processing - March 2018 - 169
IEEE Signal Processing - March 2018 - 170
IEEE Signal Processing - March 2018 - 171
IEEE Signal Processing - March 2018 - 172
IEEE Signal Processing - March 2018 - 173
IEEE Signal Processing - March 2018 - 174
IEEE Signal Processing - March 2018 - 175
IEEE Signal Processing - March 2018 - 176
IEEE Signal Processing - March 2018 - Cover3
IEEE Signal Processing - March 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com