IEEE Signal Processing - March 2018 - 144

Here, the time is t = nDt and the frequency is given by
f = k/N w Dt, Dt being the time sampling interval. Note that
N w, the dimension of the DFT, is now much larger than the
size of the time window, L w. This will enhance details in the
power spectrum. Reference [38] provides an overview of methods to compute the sliding DFT.
The STFT provides an efficient method to estimate the local
frequency content of a discrete signal. The main disadvantages
are low resolution and spectral leakage from sidelobes [2], [4].
The spectral leakage may be reduced by multiplying with a window function, but that reduces resolution [33].

e m ^nh =

Lc

/ b m ^ j h z m ^n + jh

(11)

where the backward prediction error filter is b m ( j) with
b m (0) = 1. Note that, in (10) and (11), we only use data that are
within the data analysis window. There are no assumptions about
the data outside the window. From now on, all equations refer to
the data in a window with midpoint m. We therefore do not use
the subscript m in the following.
The forward prediction error energy is

CSTAR power spectrum

F=

To obtain higher resolution for certain signals, an AR model is
being estimated for a short time window of the real signal x(n)
in the STAR process [32], [39], [40]. In these methods, the local
frequency spectrum is obtained as the inverse of the amplitude
spectrum of the linear prediction error filter. Here, we extend this
to CSTAR applied to the analytic signal (complex trace)
z ^nh = x ^nh + iH 6x ^nh@,

(6)

x ^nh,
0,

(7)

where H 6x (n)@ is the Hilbert transform x (n) [6].
Following [41], we add N zeros to the real-valued signal of
length N, resulting in
x , ^nh = '

n = 0, 1, f , N - 1
n = N, N + 1, f, 2N - 1,

which has DFT X , (k). Next, we compute

X , ^ k h, k = 0, k = N
Z , (k) = H ^ k h X , (k) = * 2X , ^ k h, k = 1, f, N - 1
(8)
0,
k = N + 1, f, 2N - 1

with inverse DFT z , (n). The analytic signal or complex trace
is now
z ^nh = '

z , ^nh, n = 0, 1, f, N - 1
0,
n = N, N + 1f, 2N - 1.

(9)

The effect of the zero-padding is to avoid wrap-around
effects in the time domain caused by the frequency-domain
product in (8).
From the complex data in a short time window z m (,),
, = 0, 1, f, L w - 1, we use the complex AR model, with L c
AR coefficients,

n = 0, 1, f, L w - 1 - L c,

j= 0

Lw - 1

/

2

f ^nh ,

(12)

n = Lc

and the backward prediction error energy is
E=

Lw - Lc - 1

/

2

e ^nh .

(13)

n=0

We have used three different methods to compute the forward prediction error operator, c m ( j), all of which minimize the
sum of the energies of the forward and backward prediction
errors. They are recursive in the order L c, and they use type
recursion [34] to reduce the number of numerical operations.
In the algorithms in [31] and [35], the backward prediction
error filter is the complex conjugate of the forward prediction
error filter
b ^nh = c) ^nh.

(14)

In this case, the energies of the forward and backward
prediction errors are identical. In [31], the energy of the prediction error is minimized with respect to a reflection coefficient that occurs in the Levinson algorithm. Reference [35]
also uses a Levinson-type recursion, but the prediction error
energy is minimized with respect to the coefficients in the
prediction error filter. Reference [36] minimized the sum of
the prediction error energies (they are now different) with
respect to different forward and backward prediction error
operators. We have used these algorithms with complex data.
We accomplish this by extending the algorithm in [36] from
real to complex signals and complex AR coefficients.
An estimate for the power spectrum of the signal, using the
forward prediction error operator [31], is
P^k h =

F ,
2
C^k h

(15)

where
C^k h =

Lc

nk

/ c^nhe -2 i N
r

w

(16)

n=0

fm ^n h =

Lc

/ c m ^ j h z m ^n - jh

n = L c, L c + 1, f, L w - 1 (10)

j=0

with c m (0) = 1 to compute the forward prediction error fm (n)
in the selected time window with midpoint index m. The backward prediction error is
144

is the DFT of the prediction error operator. The backward prediction error filter gives an estimate for the power spectrum
Q^k h =

E ,
2
B^k h

(17)

where B (k) is the DFT of the backward prediction error filter,

IEEE Signal Processing Magazine

|

March 2018

|



Table of Contents for the Digital Edition of IEEE Signal Processing - March 2018

Contents
IEEE Signal Processing - March 2018 - Cover1
IEEE Signal Processing - March 2018 - Cover2
IEEE Signal Processing - March 2018 - Contents
IEEE Signal Processing - March 2018 - 2
IEEE Signal Processing - March 2018 - 3
IEEE Signal Processing - March 2018 - 4
IEEE Signal Processing - March 2018 - 5
IEEE Signal Processing - March 2018 - 6
IEEE Signal Processing - March 2018 - 7
IEEE Signal Processing - March 2018 - 8
IEEE Signal Processing - March 2018 - 9
IEEE Signal Processing - March 2018 - 10
IEEE Signal Processing - March 2018 - 11
IEEE Signal Processing - March 2018 - 12
IEEE Signal Processing - March 2018 - 13
IEEE Signal Processing - March 2018 - 14
IEEE Signal Processing - March 2018 - 15
IEEE Signal Processing - March 2018 - 16
IEEE Signal Processing - March 2018 - 17
IEEE Signal Processing - March 2018 - 18
IEEE Signal Processing - March 2018 - 19
IEEE Signal Processing - March 2018 - 20
IEEE Signal Processing - March 2018 - 21
IEEE Signal Processing - March 2018 - 22
IEEE Signal Processing - March 2018 - 23
IEEE Signal Processing - March 2018 - 24
IEEE Signal Processing - March 2018 - 25
IEEE Signal Processing - March 2018 - 26
IEEE Signal Processing - March 2018 - 27
IEEE Signal Processing - March 2018 - 28
IEEE Signal Processing - March 2018 - 29
IEEE Signal Processing - March 2018 - 30
IEEE Signal Processing - March 2018 - 31
IEEE Signal Processing - March 2018 - 32
IEEE Signal Processing - March 2018 - 33
IEEE Signal Processing - March 2018 - 34
IEEE Signal Processing - March 2018 - 35
IEEE Signal Processing - March 2018 - 36
IEEE Signal Processing - March 2018 - 37
IEEE Signal Processing - March 2018 - 38
IEEE Signal Processing - March 2018 - 39
IEEE Signal Processing - March 2018 - 40
IEEE Signal Processing - March 2018 - 41
IEEE Signal Processing - March 2018 - 42
IEEE Signal Processing - March 2018 - 43
IEEE Signal Processing - March 2018 - 44
IEEE Signal Processing - March 2018 - 45
IEEE Signal Processing - March 2018 - 46
IEEE Signal Processing - March 2018 - 47
IEEE Signal Processing - March 2018 - 48
IEEE Signal Processing - March 2018 - 49
IEEE Signal Processing - March 2018 - 50
IEEE Signal Processing - March 2018 - 51
IEEE Signal Processing - March 2018 - 52
IEEE Signal Processing - March 2018 - 53
IEEE Signal Processing - March 2018 - 54
IEEE Signal Processing - March 2018 - 55
IEEE Signal Processing - March 2018 - 56
IEEE Signal Processing - March 2018 - 57
IEEE Signal Processing - March 2018 - 58
IEEE Signal Processing - March 2018 - 59
IEEE Signal Processing - March 2018 - 60
IEEE Signal Processing - March 2018 - 61
IEEE Signal Processing - March 2018 - 62
IEEE Signal Processing - March 2018 - 63
IEEE Signal Processing - March 2018 - 64
IEEE Signal Processing - March 2018 - 65
IEEE Signal Processing - March 2018 - 66
IEEE Signal Processing - March 2018 - 67
IEEE Signal Processing - March 2018 - 68
IEEE Signal Processing - March 2018 - 69
IEEE Signal Processing - March 2018 - 70
IEEE Signal Processing - March 2018 - 71
IEEE Signal Processing - March 2018 - 72
IEEE Signal Processing - March 2018 - 73
IEEE Signal Processing - March 2018 - 74
IEEE Signal Processing - March 2018 - 75
IEEE Signal Processing - March 2018 - 76
IEEE Signal Processing - March 2018 - 77
IEEE Signal Processing - March 2018 - 78
IEEE Signal Processing - March 2018 - 79
IEEE Signal Processing - March 2018 - 80
IEEE Signal Processing - March 2018 - 81
IEEE Signal Processing - March 2018 - 82
IEEE Signal Processing - March 2018 - 83
IEEE Signal Processing - March 2018 - 84
IEEE Signal Processing - March 2018 - 85
IEEE Signal Processing - March 2018 - 86
IEEE Signal Processing - March 2018 - 87
IEEE Signal Processing - March 2018 - 88
IEEE Signal Processing - March 2018 - 89
IEEE Signal Processing - March 2018 - 90
IEEE Signal Processing - March 2018 - 91
IEEE Signal Processing - March 2018 - 92
IEEE Signal Processing - March 2018 - 93
IEEE Signal Processing - March 2018 - 94
IEEE Signal Processing - March 2018 - 95
IEEE Signal Processing - March 2018 - 96
IEEE Signal Processing - March 2018 - 97
IEEE Signal Processing - March 2018 - 98
IEEE Signal Processing - March 2018 - 99
IEEE Signal Processing - March 2018 - 100
IEEE Signal Processing - March 2018 - 101
IEEE Signal Processing - March 2018 - 102
IEEE Signal Processing - March 2018 - 103
IEEE Signal Processing - March 2018 - 104
IEEE Signal Processing - March 2018 - 105
IEEE Signal Processing - March 2018 - 106
IEEE Signal Processing - March 2018 - 107
IEEE Signal Processing - March 2018 - 108
IEEE Signal Processing - March 2018 - 109
IEEE Signal Processing - March 2018 - 110
IEEE Signal Processing - March 2018 - 111
IEEE Signal Processing - March 2018 - 112
IEEE Signal Processing - March 2018 - 113
IEEE Signal Processing - March 2018 - 114
IEEE Signal Processing - March 2018 - 115
IEEE Signal Processing - March 2018 - 116
IEEE Signal Processing - March 2018 - 117
IEEE Signal Processing - March 2018 - 118
IEEE Signal Processing - March 2018 - 119
IEEE Signal Processing - March 2018 - 120
IEEE Signal Processing - March 2018 - 121
IEEE Signal Processing - March 2018 - 122
IEEE Signal Processing - March 2018 - 123
IEEE Signal Processing - March 2018 - 124
IEEE Signal Processing - March 2018 - 125
IEEE Signal Processing - March 2018 - 126
IEEE Signal Processing - March 2018 - 127
IEEE Signal Processing - March 2018 - 128
IEEE Signal Processing - March 2018 - 129
IEEE Signal Processing - March 2018 - 130
IEEE Signal Processing - March 2018 - 131
IEEE Signal Processing - March 2018 - 132
IEEE Signal Processing - March 2018 - 133
IEEE Signal Processing - March 2018 - 134
IEEE Signal Processing - March 2018 - 135
IEEE Signal Processing - March 2018 - 136
IEEE Signal Processing - March 2018 - 137
IEEE Signal Processing - March 2018 - 138
IEEE Signal Processing - March 2018 - 139
IEEE Signal Processing - March 2018 - 140
IEEE Signal Processing - March 2018 - 141
IEEE Signal Processing - March 2018 - 142
IEEE Signal Processing - March 2018 - 143
IEEE Signal Processing - March 2018 - 144
IEEE Signal Processing - March 2018 - 145
IEEE Signal Processing - March 2018 - 146
IEEE Signal Processing - March 2018 - 147
IEEE Signal Processing - March 2018 - 148
IEEE Signal Processing - March 2018 - 149
IEEE Signal Processing - March 2018 - 150
IEEE Signal Processing - March 2018 - 151
IEEE Signal Processing - March 2018 - 152
IEEE Signal Processing - March 2018 - 153
IEEE Signal Processing - March 2018 - 154
IEEE Signal Processing - March 2018 - 155
IEEE Signal Processing - March 2018 - 156
IEEE Signal Processing - March 2018 - 157
IEEE Signal Processing - March 2018 - 158
IEEE Signal Processing - March 2018 - 159
IEEE Signal Processing - March 2018 - 160
IEEE Signal Processing - March 2018 - 161
IEEE Signal Processing - March 2018 - 162
IEEE Signal Processing - March 2018 - 163
IEEE Signal Processing - March 2018 - 164
IEEE Signal Processing - March 2018 - 165
IEEE Signal Processing - March 2018 - 166
IEEE Signal Processing - March 2018 - 167
IEEE Signal Processing - March 2018 - 168
IEEE Signal Processing - March 2018 - 169
IEEE Signal Processing - March 2018 - 170
IEEE Signal Processing - March 2018 - 171
IEEE Signal Processing - March 2018 - 172
IEEE Signal Processing - March 2018 - 173
IEEE Signal Processing - March 2018 - 174
IEEE Signal Processing - March 2018 - 175
IEEE Signal Processing - March 2018 - 176
IEEE Signal Processing - March 2018 - Cover3
IEEE Signal Processing - March 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com