IEEE Signal Processing - March 2018 - 64
X n - x l = d l n is sufficiently smaller than Dx (see Figure 1).
We write (2) as a Taylor series around a closer point x l of the
regular grid
1
M
d ^X nh .
stand for samples d (X n), the small circles are points x l of a regular grid,
and the small vertical bars are bin delimiters.
The general setup of the problem
The problem of finding the Fourier spectra of an irregular set
of samples usually does not exhibit properties like uniqueness
and may not even have a solution. Defining the minimum and
maximum frequencies, whether a constant or a variable frequency interval should be used to get an optimal set of sinusoidal functions, is neither practical nor easy. As a result, the
general problem is commonly formulated as that of finding the
least square solution
-1
(1)
whatever the set of frequencies/wavenumbers eventually chosen to characterize the problem. Here, the upper index H
stands for the Hermitian, and K is a diagonal matrix used both
for regularization and/or conveying desired physical or statistical properties to the solution.
The use of an embedded, regular DFT restricts the set of
basic sinusoidal functions to a regularly spaced one in the frequency/wavenumber domain. Only the Nyquist frequency, and
consequently the embedded grid sampling rate, remains to be
chosen. In a highly irregular survey there may be a tradeoff
between a higher sampling rate, where all grid point displacements are small, and a smaller sampling rate, where there are
no empty bins. The former choice guarantees fast convergence
and reduced computational cost. On the other hand, as it is
going to be shown, the latter choice guarantees uniqueness and
stability in the spectrum estimate. In any case, (1) will be the
reference for building an approximate inverse for the irregular
Fourier transform.
The one-dimensional formulation
of the approximation
A unidimensional set of N measurements d (X n) can be written as a linear combination of M Fourier components if
d (X n) = 1
M
M-1
/
D m e -2irk m X n .
D m e -2irk m x l
m=0
/
j=0
(- 2irk m d l n) j
.
j!
(3)
(2)
d ( X n) .
/
j=0
(- 2ird l n) j
j!
1
M
M-1
/
(k m) j D m e -2irk m x l .
(4)
m=0
Considering that approximations of this type can be made to
every measurement point and denoting the regular DFT in (3)
as F, one can write an approximation to (1) as
d . " F + dFk + d 2 Fk 2 + ... , D,
which allows us to write the irregular unidimensional Fourier
transform in a series form as
F=
3
/
j=0
1 d j Fk j ,
j!
(5)
with k a diagonal matrix made up of different wavenumbers
times - 2ir for simplicity.
An underlying assumption of one measurement point X n
to every regular grid point x l in (5) makes it not general. The
definition of an embedded grid in a set of irregular measurements d may lead to accumulation points (more than one X
for a given x as in Figure 1) as well as grid points that have
no measured point around. To extend (5), so as to account for
accumulation and empty bins, let us introduce an extended
identity matrix I e and simply rewrite (5) as
F = Ie F +
3
/
j=1
1 d j Fk j,
j!
(6)
bearing in mind that there can be more than one n in d ln
associated with one single grid point x l . The matrix k is still
diagonal since it is desirable to keep F a regular DFT. Matrices
I e and d map a regular set of the data space into the measured
data space and, since, in general, it is neither regular nor complete, they have to carry these irregularities inside. Note that
terms like d j are not real matrix products. By construction,
they are matrices of the same shape as I e but made up of jth
powers in d ln . The general aspect of I e (and d) is that of an
identity matrix with repeated rows everywhere more than one
measured point surrounds one single grid point. Empty bins
are accounted for in I e by dropping or zeroing out corresponding rows.
m=0
with D m the discrete Fourier spectra that honor all measurements d (X n) for a given discrete set of k m . Equation (2) explicitly presents the Fourier operator F defined in (1).
Let x l, 0 1 l 1 M - 1, x l - x l - 1 = Dx 6 l be a regular
set of points defining an embedded grid where for all existing measurement point X n there is a grid point x l such that
64
/
Now, the summation over m is already a regular DFT. Rearranging, one can write
Figure 1. The unidimensional space sampled irregularly. The arrows
F -1 & 6F H F + K@ F H,
M-1
The F H F matrix
The F H F matrix is fundamental for working out an estimate
for the inverse F -1 . Given the expression for F in (6), one
can write
F H F = F H I Te I e F + 6F H I Te dFk + k ) F H d T I e F@ + ... (7)
IEEE Signal Processing Magazine
|
March 2018
|
Table of Contents for the Digital Edition of IEEE Signal Processing - March 2018
Contents
IEEE Signal Processing - March 2018 - Cover1
IEEE Signal Processing - March 2018 - Cover2
IEEE Signal Processing - March 2018 - Contents
IEEE Signal Processing - March 2018 - 2
IEEE Signal Processing - March 2018 - 3
IEEE Signal Processing - March 2018 - 4
IEEE Signal Processing - March 2018 - 5
IEEE Signal Processing - March 2018 - 6
IEEE Signal Processing - March 2018 - 7
IEEE Signal Processing - March 2018 - 8
IEEE Signal Processing - March 2018 - 9
IEEE Signal Processing - March 2018 - 10
IEEE Signal Processing - March 2018 - 11
IEEE Signal Processing - March 2018 - 12
IEEE Signal Processing - March 2018 - 13
IEEE Signal Processing - March 2018 - 14
IEEE Signal Processing - March 2018 - 15
IEEE Signal Processing - March 2018 - 16
IEEE Signal Processing - March 2018 - 17
IEEE Signal Processing - March 2018 - 18
IEEE Signal Processing - March 2018 - 19
IEEE Signal Processing - March 2018 - 20
IEEE Signal Processing - March 2018 - 21
IEEE Signal Processing - March 2018 - 22
IEEE Signal Processing - March 2018 - 23
IEEE Signal Processing - March 2018 - 24
IEEE Signal Processing - March 2018 - 25
IEEE Signal Processing - March 2018 - 26
IEEE Signal Processing - March 2018 - 27
IEEE Signal Processing - March 2018 - 28
IEEE Signal Processing - March 2018 - 29
IEEE Signal Processing - March 2018 - 30
IEEE Signal Processing - March 2018 - 31
IEEE Signal Processing - March 2018 - 32
IEEE Signal Processing - March 2018 - 33
IEEE Signal Processing - March 2018 - 34
IEEE Signal Processing - March 2018 - 35
IEEE Signal Processing - March 2018 - 36
IEEE Signal Processing - March 2018 - 37
IEEE Signal Processing - March 2018 - 38
IEEE Signal Processing - March 2018 - 39
IEEE Signal Processing - March 2018 - 40
IEEE Signal Processing - March 2018 - 41
IEEE Signal Processing - March 2018 - 42
IEEE Signal Processing - March 2018 - 43
IEEE Signal Processing - March 2018 - 44
IEEE Signal Processing - March 2018 - 45
IEEE Signal Processing - March 2018 - 46
IEEE Signal Processing - March 2018 - 47
IEEE Signal Processing - March 2018 - 48
IEEE Signal Processing - March 2018 - 49
IEEE Signal Processing - March 2018 - 50
IEEE Signal Processing - March 2018 - 51
IEEE Signal Processing - March 2018 - 52
IEEE Signal Processing - March 2018 - 53
IEEE Signal Processing - March 2018 - 54
IEEE Signal Processing - March 2018 - 55
IEEE Signal Processing - March 2018 - 56
IEEE Signal Processing - March 2018 - 57
IEEE Signal Processing - March 2018 - 58
IEEE Signal Processing - March 2018 - 59
IEEE Signal Processing - March 2018 - 60
IEEE Signal Processing - March 2018 - 61
IEEE Signal Processing - March 2018 - 62
IEEE Signal Processing - March 2018 - 63
IEEE Signal Processing - March 2018 - 64
IEEE Signal Processing - March 2018 - 65
IEEE Signal Processing - March 2018 - 66
IEEE Signal Processing - March 2018 - 67
IEEE Signal Processing - March 2018 - 68
IEEE Signal Processing - March 2018 - 69
IEEE Signal Processing - March 2018 - 70
IEEE Signal Processing - March 2018 - 71
IEEE Signal Processing - March 2018 - 72
IEEE Signal Processing - March 2018 - 73
IEEE Signal Processing - March 2018 - 74
IEEE Signal Processing - March 2018 - 75
IEEE Signal Processing - March 2018 - 76
IEEE Signal Processing - March 2018 - 77
IEEE Signal Processing - March 2018 - 78
IEEE Signal Processing - March 2018 - 79
IEEE Signal Processing - March 2018 - 80
IEEE Signal Processing - March 2018 - 81
IEEE Signal Processing - March 2018 - 82
IEEE Signal Processing - March 2018 - 83
IEEE Signal Processing - March 2018 - 84
IEEE Signal Processing - March 2018 - 85
IEEE Signal Processing - March 2018 - 86
IEEE Signal Processing - March 2018 - 87
IEEE Signal Processing - March 2018 - 88
IEEE Signal Processing - March 2018 - 89
IEEE Signal Processing - March 2018 - 90
IEEE Signal Processing - March 2018 - 91
IEEE Signal Processing - March 2018 - 92
IEEE Signal Processing - March 2018 - 93
IEEE Signal Processing - March 2018 - 94
IEEE Signal Processing - March 2018 - 95
IEEE Signal Processing - March 2018 - 96
IEEE Signal Processing - March 2018 - 97
IEEE Signal Processing - March 2018 - 98
IEEE Signal Processing - March 2018 - 99
IEEE Signal Processing - March 2018 - 100
IEEE Signal Processing - March 2018 - 101
IEEE Signal Processing - March 2018 - 102
IEEE Signal Processing - March 2018 - 103
IEEE Signal Processing - March 2018 - 104
IEEE Signal Processing - March 2018 - 105
IEEE Signal Processing - March 2018 - 106
IEEE Signal Processing - March 2018 - 107
IEEE Signal Processing - March 2018 - 108
IEEE Signal Processing - March 2018 - 109
IEEE Signal Processing - March 2018 - 110
IEEE Signal Processing - March 2018 - 111
IEEE Signal Processing - March 2018 - 112
IEEE Signal Processing - March 2018 - 113
IEEE Signal Processing - March 2018 - 114
IEEE Signal Processing - March 2018 - 115
IEEE Signal Processing - March 2018 - 116
IEEE Signal Processing - March 2018 - 117
IEEE Signal Processing - March 2018 - 118
IEEE Signal Processing - March 2018 - 119
IEEE Signal Processing - March 2018 - 120
IEEE Signal Processing - March 2018 - 121
IEEE Signal Processing - March 2018 - 122
IEEE Signal Processing - March 2018 - 123
IEEE Signal Processing - March 2018 - 124
IEEE Signal Processing - March 2018 - 125
IEEE Signal Processing - March 2018 - 126
IEEE Signal Processing - March 2018 - 127
IEEE Signal Processing - March 2018 - 128
IEEE Signal Processing - March 2018 - 129
IEEE Signal Processing - March 2018 - 130
IEEE Signal Processing - March 2018 - 131
IEEE Signal Processing - March 2018 - 132
IEEE Signal Processing - March 2018 - 133
IEEE Signal Processing - March 2018 - 134
IEEE Signal Processing - March 2018 - 135
IEEE Signal Processing - March 2018 - 136
IEEE Signal Processing - March 2018 - 137
IEEE Signal Processing - March 2018 - 138
IEEE Signal Processing - March 2018 - 139
IEEE Signal Processing - March 2018 - 140
IEEE Signal Processing - March 2018 - 141
IEEE Signal Processing - March 2018 - 142
IEEE Signal Processing - March 2018 - 143
IEEE Signal Processing - March 2018 - 144
IEEE Signal Processing - March 2018 - 145
IEEE Signal Processing - March 2018 - 146
IEEE Signal Processing - March 2018 - 147
IEEE Signal Processing - March 2018 - 148
IEEE Signal Processing - March 2018 - 149
IEEE Signal Processing - March 2018 - 150
IEEE Signal Processing - March 2018 - 151
IEEE Signal Processing - March 2018 - 152
IEEE Signal Processing - March 2018 - 153
IEEE Signal Processing - March 2018 - 154
IEEE Signal Processing - March 2018 - 155
IEEE Signal Processing - March 2018 - 156
IEEE Signal Processing - March 2018 - 157
IEEE Signal Processing - March 2018 - 158
IEEE Signal Processing - March 2018 - 159
IEEE Signal Processing - March 2018 - 160
IEEE Signal Processing - March 2018 - 161
IEEE Signal Processing - March 2018 - 162
IEEE Signal Processing - March 2018 - 163
IEEE Signal Processing - March 2018 - 164
IEEE Signal Processing - March 2018 - 165
IEEE Signal Processing - March 2018 - 166
IEEE Signal Processing - March 2018 - 167
IEEE Signal Processing - March 2018 - 168
IEEE Signal Processing - March 2018 - 169
IEEE Signal Processing - March 2018 - 170
IEEE Signal Processing - March 2018 - 171
IEEE Signal Processing - March 2018 - 172
IEEE Signal Processing - March 2018 - 173
IEEE Signal Processing - March 2018 - 174
IEEE Signal Processing - March 2018 - 175
IEEE Signal Processing - March 2018 - 176
IEEE Signal Processing - March 2018 - Cover3
IEEE Signal Processing - March 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com