IEEE Signal Processing - May 2018 - 129
50
0
Magnitude (dB)
series form to the parallel form: factoring out zeros from the numerator until
we reach M 1 N. For the typical scenario of M = N, this means factoring
out one real zero, or, if there are no real
zeros, a complex conjugate pair. Now the
filter structure is a set of parallel secondorder sections (without additional delay)
and a first- or second-order FIR filter in
series. For the case of factoring out one
real zero, we obtain
−50
−100
-1
H (z )
= (1 - z -1 z 1) e /
L
l =1
bt 0, l + bt 1, l z -1
o.
1 + a 1, l z -1 + a 2, l z -2
−150
101
102
(11)
The conversion is illustrated in Figure 5 for an eighth-order high-pass Butterworth filter designed by the butter
command in MATLAB. The thick blue
line shows the magnitude response of
the series second-order implementation
obtained from the pole-zero form (the
direct-form implementation is unstable,
thus, not shown). Since all of the zeros
of the Butterworth filter equal to unity
z m = 1 for m = 1f8, we simply factor
out one of them before performing partial fraction expansion. Thus, the resulting filter structure is composed of four
second-order IIR filters in parallel and
an FIR filter Ft (z -1) = 1 - z -1 in series.
Obviously, the four second-order sections can be computed in parallel, but
the first-order FIR filter cannot, which
might lead to a slight increase in computational time in parallel architectures.
The benefit of the factored conversion is the significantly reduced design
time. Since no root finding is required,
the partial fraction expansion requires
very few (though complex) operations.
This allows computing the parallel form
on the fly when the user is manipulating the parameters of the series transfer
function in real time, e.g., by changing
the cutoff frequency of the high-pass filter. Another typical example would be
varying the parameters of a parametric
or graphic equalizer in series form and
converting it to the more efficient parallel form in real time.
We note that, for high-order filters
such as in the example of Figure 4,
partial fraction expansion can lead to
103
104
Frequency (Hz)
Figure 5. The factored parallel implementation of an eighth-order Butterworth high-pass filter. The
cutoff frequency is fc = 100 Hz, while the sampling rate is fs = 44.1 kHz. The thick blue line shows
the response of the 4 series second-order sections, and the red dashed line displays the response of
the factored parallel implementation. The thin-colored lines display the magnitude responses of the
parallel second-order sections in series with the response of the first-order FIR filter that has been
factored out.
numerical errors even when converting
from the series form. Indeed, the example of Figure 4 cannot be converted by
the factored partial fraction expansion
method discussed in the this section,
and the least-squares method should
be used.
Conclusions
In this article, the common approach
of converting direct form IIR filters
to parallel form has been revisited: the
method based on partial fraction expansion. If the order of the numerator M is
greater or equal to that of the denominator N, the responses of the individual
transfer functions can be significantly
larger than the net transfer function
leading to reduced dynamic range and
increased quantization noise. The use of
an alternative parallel form is suggested
to avoid the dynamic range problem: in
the delayed parallel filter the response
of the second-order sections is delayed
such that there is no overlap with the
parallel FIR path. The parameters of the
delayed parallel form can also be computed by the usual partial fraction expansion; the only difference is that the order
of the numerator polynomial is reduced
by performing polynomial long division
over the reversed numerator polynomial.
IEEE Signal Processing Magazine
|
May 2018
|
For high (>100) filter orders, conversion via partial fraction expansion can be
numerically sensitive. Therefore, a simple least-squares procedure is proposed
to obtain the delayed parallel form directly. The denominators of the second-order
sections are computed by recombining
the roots of the original denominator.
The coefficients of the parallel FIR part
simply equal to the first M - N + 1 samples of the original impulse response, and
the numerators of the second-order sections are estimated by a least-squares fit
such that the resulting impulse response
is the closest possible to the impulse
response of the original filter. Since we
are directly optimizing the error of the
impulse response, this guarantees optimal filter performance (the frequency
response error will be also minimal due
to Parseval's theorem). Indeed, filters in
the order of 1,000 can be factored with
very high accuracy.
Finally, the case in which the original
transfer function is available in a pole-zero
form or, equivalently, in a series combination of second-order sections, has been
tackled. In addition to the least-squares
fit, an alternative method has been presented that starts with factoring out
zeros from the numerator until M 1 N is
reached so that partial fraction expansion
129
Table of Contents for the Digital Edition of IEEE Signal Processing - May 2018
Contents
IEEE Signal Processing - May 2018 - Cover1
IEEE Signal Processing - May 2018 - Cover2
IEEE Signal Processing - May 2018 - Contents
IEEE Signal Processing - May 2018 - 2
IEEE Signal Processing - May 2018 - 3
IEEE Signal Processing - May 2018 - 4
IEEE Signal Processing - May 2018 - 5
IEEE Signal Processing - May 2018 - 6
IEEE Signal Processing - May 2018 - 7
IEEE Signal Processing - May 2018 - 8
IEEE Signal Processing - May 2018 - 9
IEEE Signal Processing - May 2018 - 10
IEEE Signal Processing - May 2018 - 11
IEEE Signal Processing - May 2018 - 12
IEEE Signal Processing - May 2018 - 13
IEEE Signal Processing - May 2018 - 14
IEEE Signal Processing - May 2018 - 15
IEEE Signal Processing - May 2018 - 16
IEEE Signal Processing - May 2018 - 17
IEEE Signal Processing - May 2018 - 18
IEEE Signal Processing - May 2018 - 19
IEEE Signal Processing - May 2018 - 20
IEEE Signal Processing - May 2018 - 21
IEEE Signal Processing - May 2018 - 22
IEEE Signal Processing - May 2018 - 23
IEEE Signal Processing - May 2018 - 24
IEEE Signal Processing - May 2018 - 25
IEEE Signal Processing - May 2018 - 26
IEEE Signal Processing - May 2018 - 27
IEEE Signal Processing - May 2018 - 28
IEEE Signal Processing - May 2018 - 29
IEEE Signal Processing - May 2018 - 30
IEEE Signal Processing - May 2018 - 31
IEEE Signal Processing - May 2018 - 32
IEEE Signal Processing - May 2018 - 33
IEEE Signal Processing - May 2018 - 34
IEEE Signal Processing - May 2018 - 35
IEEE Signal Processing - May 2018 - 36
IEEE Signal Processing - May 2018 - 37
IEEE Signal Processing - May 2018 - 38
IEEE Signal Processing - May 2018 - 39
IEEE Signal Processing - May 2018 - 40
IEEE Signal Processing - May 2018 - 41
IEEE Signal Processing - May 2018 - 42
IEEE Signal Processing - May 2018 - 43
IEEE Signal Processing - May 2018 - 44
IEEE Signal Processing - May 2018 - 45
IEEE Signal Processing - May 2018 - 46
IEEE Signal Processing - May 2018 - 47
IEEE Signal Processing - May 2018 - 48
IEEE Signal Processing - May 2018 - 49
IEEE Signal Processing - May 2018 - 50
IEEE Signal Processing - May 2018 - 51
IEEE Signal Processing - May 2018 - 52
IEEE Signal Processing - May 2018 - 53
IEEE Signal Processing - May 2018 - 54
IEEE Signal Processing - May 2018 - 55
IEEE Signal Processing - May 2018 - 56
IEEE Signal Processing - May 2018 - 57
IEEE Signal Processing - May 2018 - 58
IEEE Signal Processing - May 2018 - 59
IEEE Signal Processing - May 2018 - 60
IEEE Signal Processing - May 2018 - 61
IEEE Signal Processing - May 2018 - 62
IEEE Signal Processing - May 2018 - 63
IEEE Signal Processing - May 2018 - 64
IEEE Signal Processing - May 2018 - 65
IEEE Signal Processing - May 2018 - 66
IEEE Signal Processing - May 2018 - 67
IEEE Signal Processing - May 2018 - 68
IEEE Signal Processing - May 2018 - 69
IEEE Signal Processing - May 2018 - 70
IEEE Signal Processing - May 2018 - 71
IEEE Signal Processing - May 2018 - 72
IEEE Signal Processing - May 2018 - 73
IEEE Signal Processing - May 2018 - 74
IEEE Signal Processing - May 2018 - 75
IEEE Signal Processing - May 2018 - 76
IEEE Signal Processing - May 2018 - 77
IEEE Signal Processing - May 2018 - 78
IEEE Signal Processing - May 2018 - 79
IEEE Signal Processing - May 2018 - 80
IEEE Signal Processing - May 2018 - 81
IEEE Signal Processing - May 2018 - 82
IEEE Signal Processing - May 2018 - 83
IEEE Signal Processing - May 2018 - 84
IEEE Signal Processing - May 2018 - 85
IEEE Signal Processing - May 2018 - 86
IEEE Signal Processing - May 2018 - 87
IEEE Signal Processing - May 2018 - 88
IEEE Signal Processing - May 2018 - 89
IEEE Signal Processing - May 2018 - 90
IEEE Signal Processing - May 2018 - 91
IEEE Signal Processing - May 2018 - 92
IEEE Signal Processing - May 2018 - 93
IEEE Signal Processing - May 2018 - 94
IEEE Signal Processing - May 2018 - 95
IEEE Signal Processing - May 2018 - 96
IEEE Signal Processing - May 2018 - 97
IEEE Signal Processing - May 2018 - 98
IEEE Signal Processing - May 2018 - 99
IEEE Signal Processing - May 2018 - 100
IEEE Signal Processing - May 2018 - 101
IEEE Signal Processing - May 2018 - 102
IEEE Signal Processing - May 2018 - 103
IEEE Signal Processing - May 2018 - 104
IEEE Signal Processing - May 2018 - 105
IEEE Signal Processing - May 2018 - 106
IEEE Signal Processing - May 2018 - 107
IEEE Signal Processing - May 2018 - 108
IEEE Signal Processing - May 2018 - 109
IEEE Signal Processing - May 2018 - 110
IEEE Signal Processing - May 2018 - 111
IEEE Signal Processing - May 2018 - 112
IEEE Signal Processing - May 2018 - 113
IEEE Signal Processing - May 2018 - 114
IEEE Signal Processing - May 2018 - 115
IEEE Signal Processing - May 2018 - 116
IEEE Signal Processing - May 2018 - 117
IEEE Signal Processing - May 2018 - 118
IEEE Signal Processing - May 2018 - 119
IEEE Signal Processing - May 2018 - 120
IEEE Signal Processing - May 2018 - 121
IEEE Signal Processing - May 2018 - 122
IEEE Signal Processing - May 2018 - 123
IEEE Signal Processing - May 2018 - 124
IEEE Signal Processing - May 2018 - 125
IEEE Signal Processing - May 2018 - 126
IEEE Signal Processing - May 2018 - 127
IEEE Signal Processing - May 2018 - 128
IEEE Signal Processing - May 2018 - 129
IEEE Signal Processing - May 2018 - 130
IEEE Signal Processing - May 2018 - 131
IEEE Signal Processing - May 2018 - 132
IEEE Signal Processing - May 2018 - Cover3
IEEE Signal Processing - May 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com