IEEE Signal Processing - May 2018 - 23

when the only restriction is the bit rate R of the resulting digital representation. In other words, we consider the minimal
distortion assuming that the encoder operates directly on the
continuous-time process X (t) , as shown in Figure 7.
This encoder observes a realization x (t) of the process X (t)
over some finite time horizon T and then represents its observation using 6TR@ bits. The number of possible states this encoding can take is, therefore, 26TR@ . As shown in Figure 8, without

0

DPCM (fs, R) (dB)

SΠ (f )

−5

−10

0

1
fs/fNyq

fixed bit rate R and the PSDs in the small frames. With a nonuniform energy
distribution, the optimal sampling rate of PCM is below the Nyquist rate.

Distortion
X (t )

Decoder
Analog

FIGURE 7. Encoding with full continuous-time source signal information.

"

x 0(t )

0...00

Encoder

x 1(t )

"

T
2

Digital

0...01
.
.
.

.
.
.
"

− T
2

R bits
s

Encoder

X (t )

TR bits
X (t )

1.5

FIGURE 6. The distortion in PCM as a function of the sampling rate fs for a

Minimal distortion subject to a bit-rate constraint
We now go back to the ADX setting of Figure 2. In this section, we consider the minimal distortion that can be attained

SΛ (f )

"

rate, since the covariance function of a bandlimited signal is continuous [23], [24]. This correlation is not exploited by the quantizer,
which maps two similar samples to the same digital value, leading to a redundant digital representation of the analog signal. Since
the overall bit rate is limited, this redundancy in representation is
translated to a higher distortion compared to the distortion in a lessredundant representation obtained at a lower sampling rate. In fact,
it is well known that the sampling rate that minimizes the distortion
in PCM also maximizes the entropy rate of the process postquantization, i.e., of YQ [n] [17]. Therefore, we conclude that the most
efficient representation of the analog signal in PCM under a bit-rate
constraint is attained by sampling at or below the Nyquist rate.
The previously discussed conclusions imply that we can readily improve the performance of PCM by providing a more compact representation of the signal in terms of bit rate under the same
distortion level, and we can do so in one of the following ways:
1) reduce the correlation between consecutive quantizer outputs by using a whitening transformation as in transform
coding [17] or by a delta feedback loop as in sigma-delta
modulation [25], [26]
2) compress the digital process YQ [n] using a universal lossless compressor, such as Lempel-Ziv [27], [28] or contexttree weighting [29]
3) aggregate a large block of, e.g., N samples of Y [n] and
r
represent these samples using a single index out of 2 RN possible values.
This last technique, commonly known as vector quantization [17], does not assume any restrictions on the mapping
from the samples to the digital representation, except the size
of the block. It therefore covers a wide range of quantization
techniques operating at bit rate R and includes 1) and 2) as
special cases. This technique leads to the most general way to
encode any discrete-time process to a digital representation,
subject only to a bit-rate constraint. Moreover, combined with
an optimal mechanism to represent the analog signal as a bit
sequence, this encoding technique attains the minimal distortion in encoding X (t) , described by Shannon's DRF D(R).

x 2TR - 1(t )

1...11

FIGURE 8. The optimal encoding with TR bits is obtained by mapping the source signal realization to the index of the predetermined reconstruction waveform
closest to this realization. The optimal set of reconstruction waveforms and the resulting average distortion are given by Shannon's source coding theorem.
IEEE Signal Processing Magazine

|

May 2018

|

23



Table of Contents for the Digital Edition of IEEE Signal Processing - May 2018

Contents
IEEE Signal Processing - May 2018 - Cover1
IEEE Signal Processing - May 2018 - Cover2
IEEE Signal Processing - May 2018 - Contents
IEEE Signal Processing - May 2018 - 2
IEEE Signal Processing - May 2018 - 3
IEEE Signal Processing - May 2018 - 4
IEEE Signal Processing - May 2018 - 5
IEEE Signal Processing - May 2018 - 6
IEEE Signal Processing - May 2018 - 7
IEEE Signal Processing - May 2018 - 8
IEEE Signal Processing - May 2018 - 9
IEEE Signal Processing - May 2018 - 10
IEEE Signal Processing - May 2018 - 11
IEEE Signal Processing - May 2018 - 12
IEEE Signal Processing - May 2018 - 13
IEEE Signal Processing - May 2018 - 14
IEEE Signal Processing - May 2018 - 15
IEEE Signal Processing - May 2018 - 16
IEEE Signal Processing - May 2018 - 17
IEEE Signal Processing - May 2018 - 18
IEEE Signal Processing - May 2018 - 19
IEEE Signal Processing - May 2018 - 20
IEEE Signal Processing - May 2018 - 21
IEEE Signal Processing - May 2018 - 22
IEEE Signal Processing - May 2018 - 23
IEEE Signal Processing - May 2018 - 24
IEEE Signal Processing - May 2018 - 25
IEEE Signal Processing - May 2018 - 26
IEEE Signal Processing - May 2018 - 27
IEEE Signal Processing - May 2018 - 28
IEEE Signal Processing - May 2018 - 29
IEEE Signal Processing - May 2018 - 30
IEEE Signal Processing - May 2018 - 31
IEEE Signal Processing - May 2018 - 32
IEEE Signal Processing - May 2018 - 33
IEEE Signal Processing - May 2018 - 34
IEEE Signal Processing - May 2018 - 35
IEEE Signal Processing - May 2018 - 36
IEEE Signal Processing - May 2018 - 37
IEEE Signal Processing - May 2018 - 38
IEEE Signal Processing - May 2018 - 39
IEEE Signal Processing - May 2018 - 40
IEEE Signal Processing - May 2018 - 41
IEEE Signal Processing - May 2018 - 42
IEEE Signal Processing - May 2018 - 43
IEEE Signal Processing - May 2018 - 44
IEEE Signal Processing - May 2018 - 45
IEEE Signal Processing - May 2018 - 46
IEEE Signal Processing - May 2018 - 47
IEEE Signal Processing - May 2018 - 48
IEEE Signal Processing - May 2018 - 49
IEEE Signal Processing - May 2018 - 50
IEEE Signal Processing - May 2018 - 51
IEEE Signal Processing - May 2018 - 52
IEEE Signal Processing - May 2018 - 53
IEEE Signal Processing - May 2018 - 54
IEEE Signal Processing - May 2018 - 55
IEEE Signal Processing - May 2018 - 56
IEEE Signal Processing - May 2018 - 57
IEEE Signal Processing - May 2018 - 58
IEEE Signal Processing - May 2018 - 59
IEEE Signal Processing - May 2018 - 60
IEEE Signal Processing - May 2018 - 61
IEEE Signal Processing - May 2018 - 62
IEEE Signal Processing - May 2018 - 63
IEEE Signal Processing - May 2018 - 64
IEEE Signal Processing - May 2018 - 65
IEEE Signal Processing - May 2018 - 66
IEEE Signal Processing - May 2018 - 67
IEEE Signal Processing - May 2018 - 68
IEEE Signal Processing - May 2018 - 69
IEEE Signal Processing - May 2018 - 70
IEEE Signal Processing - May 2018 - 71
IEEE Signal Processing - May 2018 - 72
IEEE Signal Processing - May 2018 - 73
IEEE Signal Processing - May 2018 - 74
IEEE Signal Processing - May 2018 - 75
IEEE Signal Processing - May 2018 - 76
IEEE Signal Processing - May 2018 - 77
IEEE Signal Processing - May 2018 - 78
IEEE Signal Processing - May 2018 - 79
IEEE Signal Processing - May 2018 - 80
IEEE Signal Processing - May 2018 - 81
IEEE Signal Processing - May 2018 - 82
IEEE Signal Processing - May 2018 - 83
IEEE Signal Processing - May 2018 - 84
IEEE Signal Processing - May 2018 - 85
IEEE Signal Processing - May 2018 - 86
IEEE Signal Processing - May 2018 - 87
IEEE Signal Processing - May 2018 - 88
IEEE Signal Processing - May 2018 - 89
IEEE Signal Processing - May 2018 - 90
IEEE Signal Processing - May 2018 - 91
IEEE Signal Processing - May 2018 - 92
IEEE Signal Processing - May 2018 - 93
IEEE Signal Processing - May 2018 - 94
IEEE Signal Processing - May 2018 - 95
IEEE Signal Processing - May 2018 - 96
IEEE Signal Processing - May 2018 - 97
IEEE Signal Processing - May 2018 - 98
IEEE Signal Processing - May 2018 - 99
IEEE Signal Processing - May 2018 - 100
IEEE Signal Processing - May 2018 - 101
IEEE Signal Processing - May 2018 - 102
IEEE Signal Processing - May 2018 - 103
IEEE Signal Processing - May 2018 - 104
IEEE Signal Processing - May 2018 - 105
IEEE Signal Processing - May 2018 - 106
IEEE Signal Processing - May 2018 - 107
IEEE Signal Processing - May 2018 - 108
IEEE Signal Processing - May 2018 - 109
IEEE Signal Processing - May 2018 - 110
IEEE Signal Processing - May 2018 - 111
IEEE Signal Processing - May 2018 - 112
IEEE Signal Processing - May 2018 - 113
IEEE Signal Processing - May 2018 - 114
IEEE Signal Processing - May 2018 - 115
IEEE Signal Processing - May 2018 - 116
IEEE Signal Processing - May 2018 - 117
IEEE Signal Processing - May 2018 - 118
IEEE Signal Processing - May 2018 - 119
IEEE Signal Processing - May 2018 - 120
IEEE Signal Processing - May 2018 - 121
IEEE Signal Processing - May 2018 - 122
IEEE Signal Processing - May 2018 - 123
IEEE Signal Processing - May 2018 - 124
IEEE Signal Processing - May 2018 - 125
IEEE Signal Processing - May 2018 - 126
IEEE Signal Processing - May 2018 - 127
IEEE Signal Processing - May 2018 - 128
IEEE Signal Processing - May 2018 - 129
IEEE Signal Processing - May 2018 - 130
IEEE Signal Processing - May 2018 - 131
IEEE Signal Processing - May 2018 - 132
IEEE Signal Processing - May 2018 - Cover3
IEEE Signal Processing - May 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com