IEEE Signal Processing - May 2018 - 85

automatically, depending on the type of artifact. A simple way
is to reject the data segment where the artifact is visually
clear. This is the case, for instance, for movement artifacts (a
participant's head moving during an experiment) that simultaneously affect a large number of channels over a given time
period. This step is still subjective, as the visual inspection is
user dependent.
Artifacts can also be detected and removed automatically. The simplest method involves comparing the EEG signal amplitude to an arbitrarily defined threshold signal to
remove nonphysiological, often saturated segments of very
high amplitude compared to the usual ±80 μV amplitude of
the background activity. Bad channels also can be recovered
by interpolation, using the surrounding electrodes (which is
more efficient when dense electrode arrays are available).
More sophisticated methods include filtering, which is now
widely available with any EEG reviewing software. Eye
blinks are often present during EEG experiments, and they
can be removed using the independent component analysis
method, which is performed manually or automatically
[4]. Recording the electrooculography signal simultaneously
with the EEG signals could help to precisely and automatically remove the eye blinks. In this case, adaptive filtering
has proven to be relatively efficient [15]. Muscle artifacts can
also severely corrupt EEG signals. They are more difficult to
remove because of the overlap with the EEG frequency band.
Several studies on simulated and real data have shown that
the use of blind source separation methods, such as canonical
correlation analysis, are powerful tools for removing muscle
artifacts [16], [17].

Reconstruction of EEG sources
To localize brain sources and reconstruct their time courses,
the following data are required:
■ the scalp-recorded EEG signals
■ the three-dimensional (3-D) positions of the electrodes
positioned on the head
■ the head model, which contains information about the electrical and geometrical characteristics of the head
■ the source model, which provides information about the location and orientation of the dipole sources to be estimated.
A template file for the 3-D electrode locations is often available
with the acquisition systems. However, in a patient- or subjectspecific context, the actual position may be required. A number
of 3-D digitizing devices allow for the registration of the electrode positions on the head, such as Fastrak Digitizer (Polhemus
Inc.) and Geodesic Photogrammetry System (EGI Inc.).
Realistic head models employing the boundary element method
(surfacic case) or the finite element method (volumic case)
allow for an accurate calculation of the electrical fields in the
brain. Compared to simple spherical head models, improved
realism in the description of the head geometry and in the tissues with their associated conductivities increases the quality of
the EEG forward/inverse solution. The source model is computed from the segmentation of the anatomical MRI (template or
subject specific). Usually, the white/gray matter interface is

chosen as the source space for the neocortical sources that
mostly contribute to EEG. The MRI anatomy and channel locations are coregistered using the same anatomical landmarks
(the left and right preauricular points and the nasion). In the following, we complement the aforementioned qualitative description of EEG source reconstruction with more formal aspects.
According to the dipole theory, EEG signals X (t) recorded
from M channels can be considered as linear combinations of
P time-varying current dipole sources S(t):
x 1 (t)
s 1 (t)
X (t) = f g p = G. f g p + N (t) = G.S (t) + N (t),
x M (t)
s p (t)
where G (M # P) is called the lead field matrix and N (t) is
the noise. G reflects the contribution of each brain source to
the sensors [9]. It is computed from a head model (volume
conductor) and from the positions of the electrodes. In the
case where the source distribution is constrained to a field of
current dipoles homogeneously distributed over the cortex and
normal to the cortical surface, the position and the orientation
of the sources are defined. For the methods described next, the
EEG inverse problem consists of estimating the source magnitude of
St (t) = W.X (t).

(1)

Several algorithms have been proposed to solve this problem
and estimate W based on different assumptions related to
the spatiotemporal properties of the sources and regularization constraints (see [9] for a review). Here, we describe two
methods widely used in EEG source connectivity analysis,
based respectively on a minimum norm estimate and a beamformer filter.
Weighted minimum norm estimation (wMNE) is one of the
most popular approaches. Here, W is estimated in such a way
as to produce the source distribution with the minimum power
that fits the measurements in a least-square error:
W wMNE = BG T (GBG T + mC) -1,
where m is the regularization parameter and C represents the
noise covariance matrix. The wMNE algorithm compensates
for the tendency of MNE to favor weak and surface sources
[18]. Matrix B adjusts the properties of the solution by reducing the bias inherent to the standard MNE solution.
Classically, B is a diagonal matrix built from matrix G with
nonzero terms inversely proportional to the norm of the lead
field vectors. Note that B = I in the case where the weighting
is null. Practically, m is computed based on the signal-to-noise
ratio (SNR): m = 1/SNR.
The SNR depends on the data type. For instance, in the taskrelated paradigm, the prestimuli are usually considered to be
noise and the poststimuli to be the useful signal. The SNR can
be computed using the ratio of the signal variance over these
two periods. In addition, the prestimuli period can also be used
to compute the noise covariance matrix C. In resting-state data,

IEEE Signal Processing Magazine

|

May 2018

|

85



Table of Contents for the Digital Edition of IEEE Signal Processing - May 2018

Contents
IEEE Signal Processing - May 2018 - Cover1
IEEE Signal Processing - May 2018 - Cover2
IEEE Signal Processing - May 2018 - Contents
IEEE Signal Processing - May 2018 - 2
IEEE Signal Processing - May 2018 - 3
IEEE Signal Processing - May 2018 - 4
IEEE Signal Processing - May 2018 - 5
IEEE Signal Processing - May 2018 - 6
IEEE Signal Processing - May 2018 - 7
IEEE Signal Processing - May 2018 - 8
IEEE Signal Processing - May 2018 - 9
IEEE Signal Processing - May 2018 - 10
IEEE Signal Processing - May 2018 - 11
IEEE Signal Processing - May 2018 - 12
IEEE Signal Processing - May 2018 - 13
IEEE Signal Processing - May 2018 - 14
IEEE Signal Processing - May 2018 - 15
IEEE Signal Processing - May 2018 - 16
IEEE Signal Processing - May 2018 - 17
IEEE Signal Processing - May 2018 - 18
IEEE Signal Processing - May 2018 - 19
IEEE Signal Processing - May 2018 - 20
IEEE Signal Processing - May 2018 - 21
IEEE Signal Processing - May 2018 - 22
IEEE Signal Processing - May 2018 - 23
IEEE Signal Processing - May 2018 - 24
IEEE Signal Processing - May 2018 - 25
IEEE Signal Processing - May 2018 - 26
IEEE Signal Processing - May 2018 - 27
IEEE Signal Processing - May 2018 - 28
IEEE Signal Processing - May 2018 - 29
IEEE Signal Processing - May 2018 - 30
IEEE Signal Processing - May 2018 - 31
IEEE Signal Processing - May 2018 - 32
IEEE Signal Processing - May 2018 - 33
IEEE Signal Processing - May 2018 - 34
IEEE Signal Processing - May 2018 - 35
IEEE Signal Processing - May 2018 - 36
IEEE Signal Processing - May 2018 - 37
IEEE Signal Processing - May 2018 - 38
IEEE Signal Processing - May 2018 - 39
IEEE Signal Processing - May 2018 - 40
IEEE Signal Processing - May 2018 - 41
IEEE Signal Processing - May 2018 - 42
IEEE Signal Processing - May 2018 - 43
IEEE Signal Processing - May 2018 - 44
IEEE Signal Processing - May 2018 - 45
IEEE Signal Processing - May 2018 - 46
IEEE Signal Processing - May 2018 - 47
IEEE Signal Processing - May 2018 - 48
IEEE Signal Processing - May 2018 - 49
IEEE Signal Processing - May 2018 - 50
IEEE Signal Processing - May 2018 - 51
IEEE Signal Processing - May 2018 - 52
IEEE Signal Processing - May 2018 - 53
IEEE Signal Processing - May 2018 - 54
IEEE Signal Processing - May 2018 - 55
IEEE Signal Processing - May 2018 - 56
IEEE Signal Processing - May 2018 - 57
IEEE Signal Processing - May 2018 - 58
IEEE Signal Processing - May 2018 - 59
IEEE Signal Processing - May 2018 - 60
IEEE Signal Processing - May 2018 - 61
IEEE Signal Processing - May 2018 - 62
IEEE Signal Processing - May 2018 - 63
IEEE Signal Processing - May 2018 - 64
IEEE Signal Processing - May 2018 - 65
IEEE Signal Processing - May 2018 - 66
IEEE Signal Processing - May 2018 - 67
IEEE Signal Processing - May 2018 - 68
IEEE Signal Processing - May 2018 - 69
IEEE Signal Processing - May 2018 - 70
IEEE Signal Processing - May 2018 - 71
IEEE Signal Processing - May 2018 - 72
IEEE Signal Processing - May 2018 - 73
IEEE Signal Processing - May 2018 - 74
IEEE Signal Processing - May 2018 - 75
IEEE Signal Processing - May 2018 - 76
IEEE Signal Processing - May 2018 - 77
IEEE Signal Processing - May 2018 - 78
IEEE Signal Processing - May 2018 - 79
IEEE Signal Processing - May 2018 - 80
IEEE Signal Processing - May 2018 - 81
IEEE Signal Processing - May 2018 - 82
IEEE Signal Processing - May 2018 - 83
IEEE Signal Processing - May 2018 - 84
IEEE Signal Processing - May 2018 - 85
IEEE Signal Processing - May 2018 - 86
IEEE Signal Processing - May 2018 - 87
IEEE Signal Processing - May 2018 - 88
IEEE Signal Processing - May 2018 - 89
IEEE Signal Processing - May 2018 - 90
IEEE Signal Processing - May 2018 - 91
IEEE Signal Processing - May 2018 - 92
IEEE Signal Processing - May 2018 - 93
IEEE Signal Processing - May 2018 - 94
IEEE Signal Processing - May 2018 - 95
IEEE Signal Processing - May 2018 - 96
IEEE Signal Processing - May 2018 - 97
IEEE Signal Processing - May 2018 - 98
IEEE Signal Processing - May 2018 - 99
IEEE Signal Processing - May 2018 - 100
IEEE Signal Processing - May 2018 - 101
IEEE Signal Processing - May 2018 - 102
IEEE Signal Processing - May 2018 - 103
IEEE Signal Processing - May 2018 - 104
IEEE Signal Processing - May 2018 - 105
IEEE Signal Processing - May 2018 - 106
IEEE Signal Processing - May 2018 - 107
IEEE Signal Processing - May 2018 - 108
IEEE Signal Processing - May 2018 - 109
IEEE Signal Processing - May 2018 - 110
IEEE Signal Processing - May 2018 - 111
IEEE Signal Processing - May 2018 - 112
IEEE Signal Processing - May 2018 - 113
IEEE Signal Processing - May 2018 - 114
IEEE Signal Processing - May 2018 - 115
IEEE Signal Processing - May 2018 - 116
IEEE Signal Processing - May 2018 - 117
IEEE Signal Processing - May 2018 - 118
IEEE Signal Processing - May 2018 - 119
IEEE Signal Processing - May 2018 - 120
IEEE Signal Processing - May 2018 - 121
IEEE Signal Processing - May 2018 - 122
IEEE Signal Processing - May 2018 - 123
IEEE Signal Processing - May 2018 - 124
IEEE Signal Processing - May 2018 - 125
IEEE Signal Processing - May 2018 - 126
IEEE Signal Processing - May 2018 - 127
IEEE Signal Processing - May 2018 - 128
IEEE Signal Processing - May 2018 - 129
IEEE Signal Processing - May 2018 - 130
IEEE Signal Processing - May 2018 - 131
IEEE Signal Processing - May 2018 - 132
IEEE Signal Processing - May 2018 - Cover3
IEEE Signal Processing - May 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com