IEEE Signal Processing - July 2018 - 69

0.8

0.8

0.6

0.6
pe

1

pe

1

0.4

0.4

0.2

0.2

0
100

101

102

103

0
100

104

101

102

L

L

(a)

(b)
ML Detector

Upper Bound

103

104

SBL

Figure 6. The probability of error for the ML detector and SBL algorithm as a function of L. Here, M = 5, N = 20. (a) D = 11 2 M and (b) D = 4 1 M.

where R i denotes the covariance matrix of Y characterized
by the ith candidate support, i.e., R i = S i C i S Ti + v 2w I, where
S i ! C M # D consists of the D columns of S indexed by the
ith candidate support and C i ! R D # D consists of the corresponding entries of C. The authors in [90] considered a ML
support detector
t (Y) = arg max P ^Y H ih .
}
1#i#Q

Upper bound on the probability of error for this detector was
derived in [90], which provably converges to zero as L " 3 provided D 1 M. However, in recent work, this result has been
considerably strengthened and extended to the regime D 2 M,
by exploiting the Khatri-Rao product of S [91]. In particular, it is
shown that the probability of error p e of the above detector is
upper bounded by
p e # e D log (eN/D) - aL .

(40)

The quantity a is given by a = min i ! j a i, j where

/ log f
M

a i, j =

k= 1
(i, j)

(i, j)

mk

+

1
(i, j)

mk

2

p.

(41)

Here m k is the kth eigenvalue of the matrix R 1i /2 R -j 1 R 1i /2 . It
can be verified [91] that the quantity a that controls the error
exponent in (40) is strictly greater than zero as long as
D 1 (1/2) Kruskal-rank (S ) 9 S). Since Kruskal-rank (S ) 9 S)
can be O (M 2), this result decisively shows that when M and N
are held constant, it is possible to recover supports of size
D 2 M with exponentially vanishing probability of error with
respect to L. Figure 6 shows the probability of error for both the
ML detector and the SBL algorithm as a function of L along

with the aforementioned upper bound for the ML detector. Here,
the measurement matrix S is generated as a specific realization
of an i.i.d. Gaussian random matrix and held fixed throughout
the simulations. It can be seen that both detectors are capable of
resolving supports of size larger than M.

Summary and conclusions
In this review article, we studied the role of correlation awareness in low-rank measurement models and demonstrated how
the design of efficient samplers can overcome long-standing bottlenecks in the number of identifiable parameters. In particular,
we focused on the role of difference sets and coarrays in source
localization and showed that nonuniform arrays are necessary to
unambiguously identify parameters in underdetermined models.
We also demonstrated optimal sampling techniques that maximally exploit the low-rank structure of Toeplitz covariance
matrices, and showed that deterministic sampling (GNS) outperforms random sampling in this case. These ideas naturally
extend to Bayesian sparse signal recovery techniques (such as
SBL), which implicitly translates sparsity of the unknown signals into suitable low-rank representations of the covariance
matrix. Finally, we studied recent breakthroughs in understanding fundamental limits of underdetermined parameter estimation, where the number of sources can exceed the number of
sensors. In this case, nonnuniform sampling becomes essential
to guarantee existence of consistent estimators. Spatial and temporal measurements play distinct roles in characterizing the
CRB, which exhibits unique saturation effects that only arise in
the underdetermined setting.

Acknowledgment
This work was supported in parts by the NSF CAREER Award
ECCS 1553954, NSF CPS Synergy 1544798 and the University
of California, San Diego.

IEEE Signal Processing Magazine

|

July 2018

|

69



Table of Contents for the Digital Edition of IEEE Signal Processing - July 2018

Contents
IEEE Signal Processing - July 2018 - Cover1
IEEE Signal Processing - July 2018 - Cover2
IEEE Signal Processing - July 2018 - Contents
IEEE Signal Processing - July 2018 - 2
IEEE Signal Processing - July 2018 - 3
IEEE Signal Processing - July 2018 - 4
IEEE Signal Processing - July 2018 - 5
IEEE Signal Processing - July 2018 - 6
IEEE Signal Processing - July 2018 - 7
IEEE Signal Processing - July 2018 - 8
IEEE Signal Processing - July 2018 - 9
IEEE Signal Processing - July 2018 - 10
IEEE Signal Processing - July 2018 - 11
IEEE Signal Processing - July 2018 - 12
IEEE Signal Processing - July 2018 - 13
IEEE Signal Processing - July 2018 - 14
IEEE Signal Processing - July 2018 - 15
IEEE Signal Processing - July 2018 - 16
IEEE Signal Processing - July 2018 - 17
IEEE Signal Processing - July 2018 - 18
IEEE Signal Processing - July 2018 - 19
IEEE Signal Processing - July 2018 - 20
IEEE Signal Processing - July 2018 - 21
IEEE Signal Processing - July 2018 - 22
IEEE Signal Processing - July 2018 - 23
IEEE Signal Processing - July 2018 - 24
IEEE Signal Processing - July 2018 - 25
IEEE Signal Processing - July 2018 - 26
IEEE Signal Processing - July 2018 - 27
IEEE Signal Processing - July 2018 - 28
IEEE Signal Processing - July 2018 - 29
IEEE Signal Processing - July 2018 - 30
IEEE Signal Processing - July 2018 - 31
IEEE Signal Processing - July 2018 - 32
IEEE Signal Processing - July 2018 - 33
IEEE Signal Processing - July 2018 - 34
IEEE Signal Processing - July 2018 - 35
IEEE Signal Processing - July 2018 - 36
IEEE Signal Processing - July 2018 - 37
IEEE Signal Processing - July 2018 - 38
IEEE Signal Processing - July 2018 - 39
IEEE Signal Processing - July 2018 - 40
IEEE Signal Processing - July 2018 - 41
IEEE Signal Processing - July 2018 - 42
IEEE Signal Processing - July 2018 - 43
IEEE Signal Processing - July 2018 - 44
IEEE Signal Processing - July 2018 - 45
IEEE Signal Processing - July 2018 - 46
IEEE Signal Processing - July 2018 - 47
IEEE Signal Processing - July 2018 - 48
IEEE Signal Processing - July 2018 - 49
IEEE Signal Processing - July 2018 - 50
IEEE Signal Processing - July 2018 - 51
IEEE Signal Processing - July 2018 - 52
IEEE Signal Processing - July 2018 - 53
IEEE Signal Processing - July 2018 - 54
IEEE Signal Processing - July 2018 - 55
IEEE Signal Processing - July 2018 - 56
IEEE Signal Processing - July 2018 - 57
IEEE Signal Processing - July 2018 - 58
IEEE Signal Processing - July 2018 - 59
IEEE Signal Processing - July 2018 - 60
IEEE Signal Processing - July 2018 - 61
IEEE Signal Processing - July 2018 - 62
IEEE Signal Processing - July 2018 - 63
IEEE Signal Processing - July 2018 - 64
IEEE Signal Processing - July 2018 - 65
IEEE Signal Processing - July 2018 - 66
IEEE Signal Processing - July 2018 - 67
IEEE Signal Processing - July 2018 - 68
IEEE Signal Processing - July 2018 - 69
IEEE Signal Processing - July 2018 - 70
IEEE Signal Processing - July 2018 - 71
IEEE Signal Processing - July 2018 - 72
IEEE Signal Processing - July 2018 - 73
IEEE Signal Processing - July 2018 - 74
IEEE Signal Processing - July 2018 - 75
IEEE Signal Processing - July 2018 - 76
IEEE Signal Processing - July 2018 - 77
IEEE Signal Processing - July 2018 - 78
IEEE Signal Processing - July 2018 - 79
IEEE Signal Processing - July 2018 - 80
IEEE Signal Processing - July 2018 - 81
IEEE Signal Processing - July 2018 - 82
IEEE Signal Processing - July 2018 - 83
IEEE Signal Processing - July 2018 - 84
IEEE Signal Processing - July 2018 - 85
IEEE Signal Processing - July 2018 - 86
IEEE Signal Processing - July 2018 - 87
IEEE Signal Processing - July 2018 - 88
IEEE Signal Processing - July 2018 - 89
IEEE Signal Processing - July 2018 - 90
IEEE Signal Processing - July 2018 - 91
IEEE Signal Processing - July 2018 - 92
IEEE Signal Processing - July 2018 - 93
IEEE Signal Processing - July 2018 - 94
IEEE Signal Processing - July 2018 - 95
IEEE Signal Processing - July 2018 - 96
IEEE Signal Processing - July 2018 - 97
IEEE Signal Processing - July 2018 - 98
IEEE Signal Processing - July 2018 - 99
IEEE Signal Processing - July 2018 - 100
IEEE Signal Processing - July 2018 - 101
IEEE Signal Processing - July 2018 - 102
IEEE Signal Processing - July 2018 - 103
IEEE Signal Processing - July 2018 - 104
IEEE Signal Processing - July 2018 - 105
IEEE Signal Processing - July 2018 - 106
IEEE Signal Processing - July 2018 - 107
IEEE Signal Processing - July 2018 - 108
IEEE Signal Processing - July 2018 - 109
IEEE Signal Processing - July 2018 - 110
IEEE Signal Processing - July 2018 - 111
IEEE Signal Processing - July 2018 - 112
IEEE Signal Processing - July 2018 - 113
IEEE Signal Processing - July 2018 - 114
IEEE Signal Processing - July 2018 - 115
IEEE Signal Processing - July 2018 - 116
IEEE Signal Processing - July 2018 - 117
IEEE Signal Processing - July 2018 - 118
IEEE Signal Processing - July 2018 - 119
IEEE Signal Processing - July 2018 - 120
IEEE Signal Processing - July 2018 - 121
IEEE Signal Processing - July 2018 - 122
IEEE Signal Processing - July 2018 - 123
IEEE Signal Processing - July 2018 - 124
IEEE Signal Processing - July 2018 - 125
IEEE Signal Processing - July 2018 - 126
IEEE Signal Processing - July 2018 - 127
IEEE Signal Processing - July 2018 - 128
IEEE Signal Processing - July 2018 - 129
IEEE Signal Processing - July 2018 - 130
IEEE Signal Processing - July 2018 - 131
IEEE Signal Processing - July 2018 - 132
IEEE Signal Processing - July 2018 - 133
IEEE Signal Processing - July 2018 - 134
IEEE Signal Processing - July 2018 - 135
IEEE Signal Processing - July 2018 - 136
IEEE Signal Processing - July 2018 - 137
IEEE Signal Processing - July 2018 - 138
IEEE Signal Processing - July 2018 - 139
IEEE Signal Processing - July 2018 - 140
IEEE Signal Processing - July 2018 - Cover3
IEEE Signal Processing - July 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com