IEEE Signal Processing - July 2018 - 74

tion is the denoised result. What have we done here? We imposed
suggest it is compressible due to low entropy, or even mention the
a model on our unknown, forcing the result to be likely under the
possibility of embedding it into a low-dimensional manifold. No
believed structure, thus enabling the denoising operation. The
matter what the assumption is, the bottom line is the same-the
same thought process underlies the solution of almost any task in
data we operate on is structured. This is true for images of varisignal and image processing and machine learning, either explicous kinds: video sequences; audio signals; three-dimensional
itly or implicitly.
(3-D) objects given as meshes or point clouds; financial time
As yet another example for a model in image processing and
series; data on graphs, as is the case in social or traffic networks;
its impact, consider the JPEG compression algorithm [15]. We
text files such as e-mails and other documents; and more. In fact,
are well aware of the impressive ability of this
we could go as far as stating that if a given
method to compress images by factor of ten to
data is unstructured (e.g., being independent
This article's main goal
20 with hardly any noticeable artifacts. What
and identically distributed random noise), it
is to present a novel
are the origins of this success? The answer
would be of no interest to us, since processtheory for explaining deep is twofold: the inner structure that exists in
ing it would be virtually futile.
images, and the model that JPEG harnesses to
So, coming back to our earlier question,
(convolutional) neural
the reason we can process data is the aforenetworks and their origins, exploit it. Images are redundant, as we already
mentioned structure, which facilitates this
all through the language of claimed, allowing for the core possibility of
such compression to take place. However, the
ability in all its manifestations. Indeed, the
sparse representations.
structure alone cannot suffice to get the actual
fields of signal and image processing and
compression, as a model is needed to capture
machine learning are mostly about identithis redundancy. In the case of JPEG, the model exposes this
fying the structure that exists in a given information source,
structure through the belief that small image patches (of size 8 × 8
and then exploiting it to achieve the processing goals. This
pixels) taken from natural images tend to concentrate their energy
brings us to discuss models and the central role they play in
in the lower-frequency part of the spectrum once operated upon
data processing.
by the discrete cosine transform (DCT). Thus, few transform coefficients can be kept while the rest can be discarded, leading to the
Identifying structure via models
desired compression result. One should nevertheless wonder, will
An appealing approach for identifying structure in a given inforthis algorithm perform just as well on other signal sources? The
mation source is imposing a (parametric) model on it, explicitly
answer is not necessarily positive, suggesting that every informastating a series of mathematical properties that the data is
tion source should be fitted with a proper model.
believed to satisfy. Such constraints lead to a dimensionality
reduction that is so characteristic of models and their modus operandi. We should note, however, that models are not the only
The evolution of models
avenue for identifying structure-the alternative being a nonA careful survey of the literature in image processing reveals an
parametric approach that simply describes the data distribution
evolution of models that have been proposed and adopted over
by accumulating many of its instances. We will not dwell on this
the years. We will not provide here an exhaustive list of all of
option in this article, as our focus is on models and their role in
these models, but we do mention a few central ideas such as
data processing.
Markov random fields for describing the relation between neighConsider the following example, brought to clarify our discusboring pixels [16], Laplacian smoothness of various sorts [17],
sion. Assume that we are given a measurement vector y ! R n,
total variation [18] as an edge-preserving regularization, wavelets' sparsity [19], [20], and Gaussian mixture models (GMMs)
and all that is known to us is that it is built from an ideal signal
[21], [22]. With the introduction of better models, performance
of some sort, x ! R n, contaminated by white additive Gaussimproved in a wide front of applications in image processing.
ian noise of zero mean and unit variance, i.e., y = x + e, where
Consider, for example, the classic problem of image denoise ~ N (0, I) . Could we propose a method to clean the signal y
ing, on which thousands of papers have been written. Our ability
from the noise? The answer is negative! Characterizing the noise
to remove noise from images has advanced immensely over the
alone cannot suffice for handling the denoising task, as there are
years. Indeed, the progress made has reached the point where this
infinitely many possible ways to separate y into a signal and a
problem is regarded by many in our field as nearly solved [23],
noise vector, where the estimated noise matches its desired statis[24]. Performance in denoising has improved steadily over time,
tical properties.
and this improvement was enabled mostly by the introduction of
Now, suppose that we are given additional information on the
better and more effective models for natural images. The same
unknown x, believed to belong to the family of piece-wise conprogress applies to image deblurring, inpainting, superresolution,
stant (PWC) signals, with the tendency to have as few jumps as
compression, and many other tasks.
possible. In other words, we are given a model for the underlying
In our initial description of the role of models, we stated that
structure. Could we leverage this extra information to denoise y?
these are expressing what the data is believed to satisfy, eluding
The answer is positive-we can seek the simplest PWC signal that
to the fact that models cannot be proven to be correct, just as a
is closest to y in such a way that the error matches the expected
formula in physics cannot be claimed to describe our world pernoise energy. This can be formulated mathematically in some
fectly. Rather, models can be compared and contrasted, or simply
way or another, leading to an optimization problem whose solu74

IEEE Signal Processing Magazine

|

July 2018

|



Table of Contents for the Digital Edition of IEEE Signal Processing - July 2018

Contents
IEEE Signal Processing - July 2018 - Cover1
IEEE Signal Processing - July 2018 - Cover2
IEEE Signal Processing - July 2018 - Contents
IEEE Signal Processing - July 2018 - 2
IEEE Signal Processing - July 2018 - 3
IEEE Signal Processing - July 2018 - 4
IEEE Signal Processing - July 2018 - 5
IEEE Signal Processing - July 2018 - 6
IEEE Signal Processing - July 2018 - 7
IEEE Signal Processing - July 2018 - 8
IEEE Signal Processing - July 2018 - 9
IEEE Signal Processing - July 2018 - 10
IEEE Signal Processing - July 2018 - 11
IEEE Signal Processing - July 2018 - 12
IEEE Signal Processing - July 2018 - 13
IEEE Signal Processing - July 2018 - 14
IEEE Signal Processing - July 2018 - 15
IEEE Signal Processing - July 2018 - 16
IEEE Signal Processing - July 2018 - 17
IEEE Signal Processing - July 2018 - 18
IEEE Signal Processing - July 2018 - 19
IEEE Signal Processing - July 2018 - 20
IEEE Signal Processing - July 2018 - 21
IEEE Signal Processing - July 2018 - 22
IEEE Signal Processing - July 2018 - 23
IEEE Signal Processing - July 2018 - 24
IEEE Signal Processing - July 2018 - 25
IEEE Signal Processing - July 2018 - 26
IEEE Signal Processing - July 2018 - 27
IEEE Signal Processing - July 2018 - 28
IEEE Signal Processing - July 2018 - 29
IEEE Signal Processing - July 2018 - 30
IEEE Signal Processing - July 2018 - 31
IEEE Signal Processing - July 2018 - 32
IEEE Signal Processing - July 2018 - 33
IEEE Signal Processing - July 2018 - 34
IEEE Signal Processing - July 2018 - 35
IEEE Signal Processing - July 2018 - 36
IEEE Signal Processing - July 2018 - 37
IEEE Signal Processing - July 2018 - 38
IEEE Signal Processing - July 2018 - 39
IEEE Signal Processing - July 2018 - 40
IEEE Signal Processing - July 2018 - 41
IEEE Signal Processing - July 2018 - 42
IEEE Signal Processing - July 2018 - 43
IEEE Signal Processing - July 2018 - 44
IEEE Signal Processing - July 2018 - 45
IEEE Signal Processing - July 2018 - 46
IEEE Signal Processing - July 2018 - 47
IEEE Signal Processing - July 2018 - 48
IEEE Signal Processing - July 2018 - 49
IEEE Signal Processing - July 2018 - 50
IEEE Signal Processing - July 2018 - 51
IEEE Signal Processing - July 2018 - 52
IEEE Signal Processing - July 2018 - 53
IEEE Signal Processing - July 2018 - 54
IEEE Signal Processing - July 2018 - 55
IEEE Signal Processing - July 2018 - 56
IEEE Signal Processing - July 2018 - 57
IEEE Signal Processing - July 2018 - 58
IEEE Signal Processing - July 2018 - 59
IEEE Signal Processing - July 2018 - 60
IEEE Signal Processing - July 2018 - 61
IEEE Signal Processing - July 2018 - 62
IEEE Signal Processing - July 2018 - 63
IEEE Signal Processing - July 2018 - 64
IEEE Signal Processing - July 2018 - 65
IEEE Signal Processing - July 2018 - 66
IEEE Signal Processing - July 2018 - 67
IEEE Signal Processing - July 2018 - 68
IEEE Signal Processing - July 2018 - 69
IEEE Signal Processing - July 2018 - 70
IEEE Signal Processing - July 2018 - 71
IEEE Signal Processing - July 2018 - 72
IEEE Signal Processing - July 2018 - 73
IEEE Signal Processing - July 2018 - 74
IEEE Signal Processing - July 2018 - 75
IEEE Signal Processing - July 2018 - 76
IEEE Signal Processing - July 2018 - 77
IEEE Signal Processing - July 2018 - 78
IEEE Signal Processing - July 2018 - 79
IEEE Signal Processing - July 2018 - 80
IEEE Signal Processing - July 2018 - 81
IEEE Signal Processing - July 2018 - 82
IEEE Signal Processing - July 2018 - 83
IEEE Signal Processing - July 2018 - 84
IEEE Signal Processing - July 2018 - 85
IEEE Signal Processing - July 2018 - 86
IEEE Signal Processing - July 2018 - 87
IEEE Signal Processing - July 2018 - 88
IEEE Signal Processing - July 2018 - 89
IEEE Signal Processing - July 2018 - 90
IEEE Signal Processing - July 2018 - 91
IEEE Signal Processing - July 2018 - 92
IEEE Signal Processing - July 2018 - 93
IEEE Signal Processing - July 2018 - 94
IEEE Signal Processing - July 2018 - 95
IEEE Signal Processing - July 2018 - 96
IEEE Signal Processing - July 2018 - 97
IEEE Signal Processing - July 2018 - 98
IEEE Signal Processing - July 2018 - 99
IEEE Signal Processing - July 2018 - 100
IEEE Signal Processing - July 2018 - 101
IEEE Signal Processing - July 2018 - 102
IEEE Signal Processing - July 2018 - 103
IEEE Signal Processing - July 2018 - 104
IEEE Signal Processing - July 2018 - 105
IEEE Signal Processing - July 2018 - 106
IEEE Signal Processing - July 2018 - 107
IEEE Signal Processing - July 2018 - 108
IEEE Signal Processing - July 2018 - 109
IEEE Signal Processing - July 2018 - 110
IEEE Signal Processing - July 2018 - 111
IEEE Signal Processing - July 2018 - 112
IEEE Signal Processing - July 2018 - 113
IEEE Signal Processing - July 2018 - 114
IEEE Signal Processing - July 2018 - 115
IEEE Signal Processing - July 2018 - 116
IEEE Signal Processing - July 2018 - 117
IEEE Signal Processing - July 2018 - 118
IEEE Signal Processing - July 2018 - 119
IEEE Signal Processing - July 2018 - 120
IEEE Signal Processing - July 2018 - 121
IEEE Signal Processing - July 2018 - 122
IEEE Signal Processing - July 2018 - 123
IEEE Signal Processing - July 2018 - 124
IEEE Signal Processing - July 2018 - 125
IEEE Signal Processing - July 2018 - 126
IEEE Signal Processing - July 2018 - 127
IEEE Signal Processing - July 2018 - 128
IEEE Signal Processing - July 2018 - 129
IEEE Signal Processing - July 2018 - 130
IEEE Signal Processing - July 2018 - 131
IEEE Signal Processing - July 2018 - 132
IEEE Signal Processing - July 2018 - 133
IEEE Signal Processing - July 2018 - 134
IEEE Signal Processing - July 2018 - 135
IEEE Signal Processing - July 2018 - 136
IEEE Signal Processing - July 2018 - 137
IEEE Signal Processing - July 2018 - 138
IEEE Signal Processing - July 2018 - 139
IEEE Signal Processing - July 2018 - 140
IEEE Signal Processing - July 2018 - Cover3
IEEE Signal Processing - July 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com