IEEE Systems, Man and Cybernetics Magazine - October 2021 - 30
conclusion of the neurophysiological study mentioned
in the " DNNs " section.
Conclusion
This article investigated the potential conclusion coherence
of a working memory study between the approach
from the DNN-based perspective and the methods from the
neurophysiological perspective. The results revealed the
fact that the overall network looks into certain common
areas to distinguish the topographical EEG data under different
workloads. Also, the brain areas that tended to get
focused are in the PFC area, which merits the conclusions
made from the conventional neural physiological studies.
Acknowledgment
This work involved human subjects or animals in its
research. The authors confirm that all human/animal subject
research procedures and protocols are exempt from
review board approval.
About the Authors
Yurui Ming (yrming@gmail.com) is with the Department
of Information Technology, Beijing Institute of Education,
Beijing, 100120, China and the School of Computer Science,
Faculty of Engineering and IT, University of Technology
Sydney, Sydney, NSW, 2007, Australia.
Chin-Teng Lin (chin-teng.lin@uts.edu.au) is with the
School of Computer Science, Faculty of Engineering and IT,
University of Technology Sydney, Sydney, NSW, 2007, Australia.
References
[1] Y. LeCun, Y. Bengio, and G. Hinton, " Deep learning, " Nature, vol. 521, no. 7553,
pp. 436-444, May 1, 2015. doi: 10.1038/nature14539.
[2] P. Bashivan, I. Rish, M. Yeasin, and N. Codella, " Learning representations from
EEG with deep recurrent-convolutional neural networks, " 2016, arXiv:1511.06448.
[3] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J.
Lance, " EEGNet: A compact convolutional neural network for EEG-based braincomputer
interfaces, " J. Neural Eng., vol. 15, no. 5, p. 056013, Oct. 2018. doi:
10.1088/1741-2552/aace8c.
[4] A. Vahid, M. Mückschel, S. Stober, A.-K. Stock, and C. Beste, " Applying deep learning
to single-trial EEG data provides evidence for complementary theories on action
control, " Commun. Biol., vol. 3, no. 1, p. 112, Mar. 2020. doi: 10.1038/s42003-020-0846-z.
[5] M. D. Zeiler and R. Fergus, " Visualizing and understanding convolutional networks, "
in Proc. Eur. Conf. Comput. Vision, Springer-Verlag, 2014, pp. 818-833. doi:
10.1007/978-3-319-10590-1_53.
[6] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, " SVCCA: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability, " 2017,
arXiv:1706.05806v2.
[7] G. Montavon, W. Samek, and K.-R. Müller, " Methods for interpreting and understanding
deep neural networks, " Digit. Signal Process., vol. 73, no. C, pp. 1-15, Feb.
2018. doi: 10.1016/j.dsp.2017.10.011.
[8] K. Vinken, X. Boix, and G. Kreiman, " Incorporating intrinsic suppression in deep
neural networks captures dynamics of adaptation in neurophysiology and perception, "
Sci. Adv., vol. 6, no. 42, p. eabd4205, 2020. doi: 10.1126/sciadv.abd4205.
[9] W. Fruehwirt et al., " Bayesian deep neural networks for low-cost neurophysiological
markers of Alzheimer's disease severity, " 2018, arXiv:1812.04994.
30 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE October 2021
[10] S. M. J. Jalali, S. Ahmadian, A. Khosravi, M. Shafie-khah, S. Nahavandi, and J. P.
Catalao, " A novel evolutionary-based deep convolutional neural network model for
intelligent load forecasting, " IEEE Trans. Ind. Informat., early access, Mar. 2021. doi:
10.1109/TII.2021.3065718.
[11] S. M. J. Jalali et al., " Towards novel deep neuroevolution models: Chaotic levy
grasshopper optimization for short-term wind speed forecasting, " Eng. Comput., early
access, Mar. 2021. doi: 10.1007/s00366-021-01356-0.
[12] M. Abdar et al., " A review of uncertainty quantification in deep learning: Techniques,
applications and challenges, " 2020, arXiv:2011.06225.
[13] D. L. Schomer and F. H. Lopes da Silva, Niedermeyer's Electroencephalography:
Basic Principles, Clinical Applications, and Related Fields, 6th ed. Philadelphia: Lippincott
Williams & Wilkins, 2011.
[14] J. Shane, " When algorithms surprise us, " AI Weirdness, Apr. 13, 2018. https://
aiweirdness.com/post/172894792687/when-algorithms-surprise-us (accessed Oct. 1, 2020).
[15] M. Minsky, " Embarrassing mistakes in perceptron research, " Web of Stories.
https://www.webofstories.com/play/marvin.minsky/122 (accessed Oct. 1, 2020).
[16] M. T. Ribeiro, S. Singh, and C. Guestrin, " 'Why should I trust you?': Explaining the
predictions of any classifier, " 2016, arXiv:1602.04938v3.
[17] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, " Learning deep features
for discriminative localization, " in Proc. IEEE Conf. Comput. Vision Pattern
Recognit. (CVPR), June 27-30, 2016, pp. 2921-2929. doi: 10.1109/CVPR.2016.319.
[18] B. Alan, " Working memory: Looking back and looking forward, " Nature Rev. Neurosci.,
vol. 4, no. 10, pp. 829-839, 2003. doi: 10.1038/nrn1201.
[19] P. J. Olesen, H. Westerberg, and T. Klingberg, " Increased prefrontal and parietal
activity after training of working memory, " Nature Neurosci., vol. 7, no. 1, pp. 75-79,
2003. doi: 10.1038/nn1165.
[20] J. D. Murray, A. Bernacchia, N. A. Roy, C. Constantinidis, R. Romo, and X.-J. Wang,
" Stable population coding for working memory coexists with heterogeneous neural
dynamics in prefrontal cortex, " Proc. Nat. Acad. Sci. USA, vol. 114, no. 2, pp. 394-399,
2017. doi: 10.1073/pnas.1619449114.
[21] E. Boran et al., " Persistent hippocampal neural firing and hippocampal-cortical
coupling predict verbal working memory load, " Sci. Adv., vol. 5, no. 3, p. eaav3687,
2019. doi: 10.1126/sciadv.aav3687.
[22] M. Lundqvist, J. Rose, P. Herman, S. L. Brincat, T. J. Buschman, and E. K. Miller,
" Gamma and beta bursts underlie working memory, " Neuron, vol. 90, no. 1, pp. 152-
164, 2016. doi: 10.1016/j.neuron.2016.02.028.
[23] E. K. Miller, C. A. Erickson, and R. Desimone, " Neural mechanisms of visual
working memory in prefrontal cortex of the macaque, " J. Neurosci., vol. 16, no. 16,
pp. 5154-5167, 1996. doi: 10.1523/JNEUROSCI.16-16-05154.1996.
[24] M. G. Stokes, " 'Activity-silent' working memory in prefrontal cortex: A dynamic
coding framework, " Trends Cogn. Sci., vol. 19, no. 7, pp. 394-405, 2015. doi: 10.1016/j.
tics.2015.05.004.
[25] P. Bashivan, G. M. Bidelman, and M. Yeasin, " Spectrotemporal dynamics of the
EEG during working memory encoding and maintenance predicts individual behavioral
capacity, " Eur. J. Neurosci., vol. 40, no. 12, pp. 3774-3784, 2014. doi: 10.1111/ejn.12749.
[26] O. Jensen and C. D. Tesche, " Frontal theta activity in humans increases with
memory load in a working memory task, " Eur. J. Neurosci., vol. 15, no. 8, pp. 1395-
1399, 2002. doi: 10.1046/j.1460-9568.2002.01975.x.
[27] M. Research, " Dogs vs. cats create an algorithm to distinguish dogs from cats, "
Kaggle. https://www.kaggle.com/c/dogs-vs-cats/data (accessed Dec. 1, 2020).
[28] L. J. P. van der Maaten and G. E. Hinton, " Visualizing high-dimensional data using
t-SNE, " J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.
[29] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, " Image quality assessment:
From error visibility to structural similarity, " IEEE Trans. Image Process.,
vol. 13, no. 4, pp. 600-612, 2004. doi: 10.1109/TIP.2003.819861.
https://aiweirdness.com/post/172894792687/when-algorithms-surprise-us
https://aiweirdness.com/post/172894792687/when-algorithms-surprise-us
https://www.webofstories.com/play/marvin.minsky/122
https://www.kaggle.com/c/dogs-vs-cats/data
IEEE Systems, Man and Cybernetics Magazine - October 2021
Table of Contents for the Digital Edition of IEEE Systems, Man and Cybernetics Magazine - October 2021
Contents
IEEE Systems, Man and Cybernetics Magazine - October 2021 - Cover1
IEEE Systems, Man and Cybernetics Magazine - October 2021 - Cover2
IEEE Systems, Man and Cybernetics Magazine - October 2021 - Contents
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 2
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 3
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 4
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 5
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 6
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 7
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 8
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 9
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 10
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 11
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 12
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 13
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 14
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 15
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 16
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 17
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 18
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 19
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 20
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 21
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 22
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 23
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 24
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 25
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 26
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 27
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 28
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 29
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 30
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 31
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 32
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 33
IEEE Systems, Man and Cybernetics Magazine - October 2021 - 34
IEEE Systems, Man and Cybernetics Magazine - October 2021 - Cover3
IEEE Systems, Man and Cybernetics Magazine - October 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/smc_202310
https://www.nxtbook.com/nxtbooks/ieee/smc_202307
https://www.nxtbook.com/nxtbooks/ieee/smc_202304
https://www.nxtbook.com/nxtbooks/ieee/smc_202301
https://www.nxtbook.com/nxtbooks/ieee/smc_202210
https://www.nxtbook.com/nxtbooks/ieee/smc_202207
https://www.nxtbook.com/nxtbooks/ieee/smc_202204
https://www.nxtbook.com/nxtbooks/ieee/smc_202201
https://www.nxtbook.com/nxtbooks/ieee/smc_202110
https://www.nxtbook.com/nxtbooks/ieee/smc_202107
https://www.nxtbook.com/nxtbooks/ieee/smc_202104
https://www.nxtbook.com/nxtbooks/ieee/smc_202101
https://www.nxtbook.com/nxtbooks/ieee/smc_202010
https://www.nxtbook.com/nxtbooks/ieee/smc_202007
https://www.nxtbook.com/nxtbooks/ieee/smc_202004
https://www.nxtbook.com/nxtbooks/ieee/smc_202001
https://www.nxtbook.com/nxtbooks/ieee/smc_201910
https://www.nxtbook.com/nxtbooks/ieee/smc_201907
https://www.nxtbook.com/nxtbooks/ieee/smc_201904
https://www.nxtbook.com/nxtbooks/ieee/smc_201901
https://www.nxtbook.com/nxtbooks/ieee/smc_201810
https://www.nxtbook.com/nxtbooks/ieee/smc_201807
https://www.nxtbook.com/nxtbooks/ieee/smc_201804
https://www.nxtbook.com/nxtbooks/ieee/smc_201801
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1017
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0717
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0417
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0117
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1016
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0716
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0416
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0116
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1015
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0715
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0415
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0115
https://www.nxtbookmedia.com