IEEE Systems, Man and Cybernetics Magazine - October 2022 - 25
[28] M. Zeng, M. Li, Z. Fei, Y. Yu, Y. Pan, and J. Wang, " Automatic ICD-9 coding via
deep transfer learning, " Neurocomputing, vol. 324, pp. 43-50, Jan. 2019, doi: 10.1016/j.
neucom.2018.04.081.
[29] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, " Transfer learning
for time series classification, " in Proc. IEEE Int. Conf. Big Data (Big Data), 2018,
pp. 1367-1376, doi: 10.1109/BigData.2018.8621990.
[30] L. Guo et al., " Deep convolutional transfer learning network: A new method for
intelligent fault diagnosis of machines with unlabeled data, " IEEE Trans. Ind. Electron.,
vol. 66, no. 9, pp. 7316-7325, Sep. 2018, doi: 10.1109/TIE.2018.2877090.
[31] H. Shao et al., " Intelligent fault diagnosis of rotor-bearing system under varying working
conditions with modified transfer convolutional neural network and thermal images, " IEEE
Trans. Ind. Informat., vol. 17, no. 5, pp. 3488-3496, May 2020, doi: 10.1109/TII.2020.3005965.
[32] J. Li, R. Huang, G. He, S. Wang, G. Li, and W. Li, " A deep adversarial transfer
learning network for machinery emerging fault detection, " IEEE Sensors J., vol. 20, no.
15, pp. 8413-8422, Aug. 2020, doi: 10.1109/JSEN.2020.2975286.
[33] M. Hussain, J. J. Bird, and D. R. Faria, " A study on CNN transfer learning for
image classification, " in U.K. Workshop on Computational Intelligence, A. Lotfi,
H. Bouchachia, A. Gegov, C. Langensiepen, and M. McGinnity, Eds. Cham: Springer
Nature Switzerland AG, 2018, pp. 191-202.
[34] L. Huang, Y. Yang, Y. Deng, and Y. Yu, " Densebox: Unifying landmark localization
with end to end object detection, " 2015, arXiv:1509.04874.
[35] Y. Li, Y. Zhang, Y. Xu, J. Wang, and Z. Miao, " Robust scale adaptive kernel correlation
filter tracker with hierarchical convolutional features, " IEEE Signal Process.
Lett., vol. 23, no. 8, pp. 1136-1140, Aug. 2016, doi: 10.1109/LSP.2016.2582783.
[36] D. H. Hubel and T. N. Wiesel, " Receptive fields, binocular interaction and functional
architecture in the cat's visual cortex, " J. Physiol., vol. 160, no. 1, pp. 106-154,
1962, doi: 10.1113/jphysiol.1962.sp006837.
[37] M. Kiruthika and S. Bindu, " Classification of electrical power system conditions
with convolutional neural networks, " Eng., Technol. Appl. Sci. Res., vol. 10, no. 3,
pp. 5759-5768, 2020, doi: 10.48084/etasr.3512.
[38] S. Shao et al., " Highly accurate machine fault diagnosis using deep transfer learning, "
IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2446-2455, Apr. 2018, doi: 10.1109/
TII.2018.2864759.
[39] D. Zhiyong et al., " Fast and accurate cable detection using CNN, " Appl. Intell., vol.
50, no. 12, pp. 4688-4707, 2020, doi: 10.1007/s10489-020-01746-9.
[40] C. Alippi, S. Disabato, and M. Roveri, " Moving convolutional neural networks to
embedded systems: The AlexNet and VGG-16 case, " in Proc. 17th ACM/IEEE Int. Conf.
Inf. Process. Sensor Netw. (IPSN), pp. 212-223, doi: 10.1109/IPSN.2018.00049.
[41] K. Simonyan and A. Zisserman, " Very deep convolutional networks for large-scale
image recognition, " 2014, arXiv: 1409.1556.
[42] M. A. Morid, A. Borjali, and G. Del Fiol, " A scoping review of transfer learning
research on medical image analysis using ImageNet, " Comput. Biol. Med., vol. 128, p.
104,115, Jan. 2021, doi: 10.1016/j.compbiomed.2020.104115.
[43] S. J. Pan and Q. Yang, " A survey on transfer learning, " IEEE Trans. Knowl. Data
Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2009, doi: 10.1109/TKDE.2009.191.
[44] H. Zheng et al., " Cross-domain fault diagnosis using knowledge transfer strategy:
A review, " IEEE Access, vol. 7, pp. 129,260-129,290, Sep. 2019, doi: 10.1109/
ACCESS.2019.2939876.
[45] G. Csurka, " Domain adaptation for visual applications: A comprehensive survey, "
2017, arXiv:1702.05374.
[46] C. Fellbaum, " Wordnet, " in Theory and Applications of Ontology: Computer
Applications, R. Poli, M. Healy, and A. Kameas, Eds. New York, NY, USA: Springer Science
& Business Media, 2010, pp. 231-243.
[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, " ImageNet: A largescale
hierarchical image database, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pp. 248-255, 2000, doi: 10.1109/CVPR.2009.5206848.
[48] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, " A survey of the recent architectures
of deep convolutional neural networks, " Artif. Intell. Rev., vol. 53, no. 8,
pp. 5455-5516, 2020, doi: 10.1007/s10462-020-09825-6.
[49] V. Cheplygina, M. de Bruijne, and J. P. Pluim, " Not-so-supervised: A survey
of semi-supervised, multi-instance, and transfer learning in medical image
analysis, " Med. Image Anal., vol. 54, pp. 280-296, May 2019, doi: 10.1016/j.media.
2019.03.009.
[50] C. Shorten and T. M. Khoshgoftaar, " A survey on image data augmentation
for deep learning, " J. Big Data, vol. 6, no. 1, pp. 1-48, 2019, doi: 10.1186/s40537
-019-0197-0.
[51] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, " Revisiting unreasonable effectiveness
of data in deep learning era, " in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp.
843-852, doi: 10.1109/ICCV.2017.97.
[52] A. Raimundo, " Insulator data set - Chinese power line insulator dataset (CPLID), "
IEEE DataPort, 2020.
[53] A. Mikołajczyk and M. Grochowski, " Data augmentation for improving deep learning
in image classification problem, " in Proc. Int. Interdisciplinary PhD Workshop
(IIPhDW), pp. 117-122, 2018, doi: 10.1109/IIPHDW.2018.8388338.
[54] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, " How transferable are features
in deep neural networks? " in Proc. Adv. Neural Inf. Process. Syst., 2014, vol. 27,
pp. 3320-3328.
[55] L. Gatys, A. S. Ecker, and M. Bethge, " Texture synthesis using convolutional neural
networks, " in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 262-270.
[56] F. Chollet et al., " Keras, " 2015.
[57] M. Abedi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. (2015). [Online]. Available: https://www.tensorflow.org/
[58] F. Pedregosa et al., " Scikit-learn: Machine learning in python, " J. Mach. Learn.
Res., vol. 12, pp. 2825-2830, Jan. 2011.
[59] L. Du et al., " Improved detection method for traffic signs in real scenes applied
in intelligent and connected vehicles, " IET Intell. Transp. Syst., vol. 14, no. 12, pp.
1555-1564, 2020, doi: 10.1049/iet-its.2019.0475.
[60] J. Tang, G. Liu, and Q. Pan, " A review on representative swarm intelligence
algorithms for solving optimization problems: Applications and trends, " IEEE/CAA
J. Automat. Sinica, vol. 8, no. 10, pp. 1627-1643, Oct. 2021, doi: 10.1109/JAS.2021.1004129.
[61] Y. Wang, S. Gao, M. Zhou, and Y. Yu, " A multi-layered gravitational search algorithm
for function optimization and real-world problems, " IEEE/CAA J. Automat.
Sinica, vol. 8, no. 1, pp. 94-109, Jan. 2020, doi: 10.1109/JAS.2020.1003462.
[62] H. Yuan, M. Zhou, Q. Liu, and A. Abusorrah, " Fine-grained resource provisioning
and task scheduling for heterogeneous applications in distributed green clouds, "
IEEE/CAA J. Automat. Sinica, vol. 7, no. 5, pp. 1380-1393, 2020, doi: 10.1109/
JAS.2020.1003177.
[63] G. Tian, Y. Ren, and M. Zhou, " Dual-objective scheduling of rescue vehicles to
distinguish forest fires via differential evolution and particle swarm optimization combined
algorithm, " IEEE Trans. Intell. Transp. Syst., vol. 17, no. 11, pp. 3009-3021, Nov.
2016, doi: 10.1109/TITS.2015.2505323.
[64] Z. Zhao, M. Zhou, and S. Liu, " Iterated greedy algorithms for flow-shop scheduling
problems: A tutorial, " IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 1941-1959,
Jul. 2021, doi: 10.1109/TASE.2021.3062994.
[65] A. C. Ammari, W. Labidi, F. Mnif, H. Yuan, M. Zhou, and M. Sarrab, " Firefly algorithm
and learning-based geographical task scheduling for operational cost minimization
in distributed green data centers, " Neurocomputing, vol. 490, no. C, pp. 146-162,
Jun. 2022, doi: 10.1016/j.neucom.2022.01.052.
[66] Y. Fu, M. Zhou, X. Guo, and L. Qi, " Scheduling dual-objective stochastic hybrid
flow shop with deteriorating jobs via bi-population evolutionary algorithm, " IEEE
Trans. Syst., Man, Cybern. Syst., vol. 50, no. 12, pp. 5037-5048, Dec. 2020, doi: 10.1109/
TSMC.2019.2907575.
October 2022 IEEE SYSTEMS, MAN, & CYBERNETICS MAGAZINE 25
http://dx.doi.org/10.1016/j.neucom.2018.04.081
http://dx.doi.org/10.1016/j.neucom.2018.04.081
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1109/TIE.2018.2877090
http://dx.doi.org/10.1016/j.media.2019.03.009
http://dx.doi.org/10.1016/j.media.2019.03.009
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/TII.2020.3005965
http://dx.doi.org/10.1109/JSEN.2020.2975286
http://dx.doi.org/10.1109/IIPHDW.2018.8388338
http://dx.doi.org/10.1109/LSP.2016.2582783
https://www.tensorflow.org/
http://dx.doi.org/10.1113/jphysiol.1962.sp006837
http://dx.doi.org/10.48084/etasr.3512
http://dx.doi.org/10.1049/iet-its.2019.0475
http://dx.doi.org/10.1109/TII.2018.2864759
http://dx.doi.org/10.1109/TII.2018.2864759
http://dx.doi.org/10.1109/JAS.2021.1004129
http://dx.doi.org/10.1109/JAS.2020.1003462
http://dx.doi.org/10.1109/IPSN.2018.00049
http://dx.doi.org/10.1109/JAS.2020.1003177
http://dx.doi.org/10.1109/JAS.2020.1003177
http://dx.doi.org/10.1016/j.compbiomed.2020.104115
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TITS.2015.2505323
http://dx.doi.org/10.1109/ACCESS.2019.2939876
http://dx.doi.org/10.1109/ACCESS.2019.2939876
http://dx.doi.org/10.1109/TASE.2021.3062994
IEEE Systems, Man and Cybernetics Magazine - October 2022
Table of Contents for the Digital Edition of IEEE Systems, Man and Cybernetics Magazine - October 2022
Contents
IEEE Systems, Man and Cybernetics Magazine - October 2022 - Cover1
IEEE Systems, Man and Cybernetics Magazine - October 2022 - Cover2
IEEE Systems, Man and Cybernetics Magazine - October 2022 - Contents
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 2
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 3
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 4
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 5
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 6
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 7
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 8
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 9
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 10
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 11
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 12
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 13
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 14
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 15
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 16
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 17
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 18
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 19
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 20
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 21
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 22
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 23
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 24
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 25
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 26
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 27
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 28
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 29
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 30
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 31
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 32
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 33
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 34
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 35
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 36
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 37
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 38
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 39
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 40
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 41
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 42
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 43
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 44
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 45
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 46
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 47
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 48
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 49
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 50
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 51
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 52
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 53
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 54
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 55
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 56
IEEE Systems, Man and Cybernetics Magazine - October 2022 - 57
IEEE Systems, Man and Cybernetics Magazine - October 2022 - Cover3
IEEE Systems, Man and Cybernetics Magazine - October 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/smc_202310
https://www.nxtbook.com/nxtbooks/ieee/smc_202307
https://www.nxtbook.com/nxtbooks/ieee/smc_202304
https://www.nxtbook.com/nxtbooks/ieee/smc_202301
https://www.nxtbook.com/nxtbooks/ieee/smc_202210
https://www.nxtbook.com/nxtbooks/ieee/smc_202207
https://www.nxtbook.com/nxtbooks/ieee/smc_202204
https://www.nxtbook.com/nxtbooks/ieee/smc_202201
https://www.nxtbook.com/nxtbooks/ieee/smc_202110
https://www.nxtbook.com/nxtbooks/ieee/smc_202107
https://www.nxtbook.com/nxtbooks/ieee/smc_202104
https://www.nxtbook.com/nxtbooks/ieee/smc_202101
https://www.nxtbook.com/nxtbooks/ieee/smc_202010
https://www.nxtbook.com/nxtbooks/ieee/smc_202007
https://www.nxtbook.com/nxtbooks/ieee/smc_202004
https://www.nxtbook.com/nxtbooks/ieee/smc_202001
https://www.nxtbook.com/nxtbooks/ieee/smc_201910
https://www.nxtbook.com/nxtbooks/ieee/smc_201907
https://www.nxtbook.com/nxtbooks/ieee/smc_201904
https://www.nxtbook.com/nxtbooks/ieee/smc_201901
https://www.nxtbook.com/nxtbooks/ieee/smc_201810
https://www.nxtbook.com/nxtbooks/ieee/smc_201807
https://www.nxtbook.com/nxtbooks/ieee/smc_201804
https://www.nxtbook.com/nxtbooks/ieee/smc_201801
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1017
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0717
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0417
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0117
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1016
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0716
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0416
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0116
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_1015
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0715
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0415
https://www.nxtbook.com/nxtbooks/ieee/systems_man_cybernetics_0115
https://www.nxtbookmedia.com