IEEE Solid-State Circuits Magazine - Fall 2015 - 62

Summary
A tenfold increase in computer performance over five years was hypothesized, and the obstacles that
must be cleared by wireline communications technology to achieve this
were examined. In current computer
systems, as a result of the fact that
processors and memory have historically evolved separately, the energy consumed by data transfer and
memory access is about two orders
of magnitude greater than that consumed by compute operations. For
the coming five-year period, where
the target for performance improvement is tenfold that of the present,
performance is to be improved by
placing more emphasis on reducing the energy for data transfer and
memory access than for operations.
This being the case, signal transfer
at the layer closest to the processor
must be reduced to sub-pJ/bit levels.
Achieving a hundredfold performance improvement in ten years'
time will require a review of compute-operation methods. For example, the frequency of data access
required to perform the information-processing task will need to be
reduced to several percent of its current level. Compute operations that
employ structure, as in FPGAs, must
be adopted as the main method. Concurrently, the energy needed for data
transmission between chips must be
lowered to sub-0.5 pJ/bit levels.
Performance improvements beyond this will need to retain the
Neumann-type architecture and
fully use an algorithm based on a
connection structure (such as a
neural network). Even for normal
logic operation, a completely integrated structure for memory and
operation on the chip will become
necessary. The major target for
wireline communications technology in this time frame must be to
flexibly achieve these diverse chipinterworking structures.
Another item not discussed fully
in this article is form, i.e., the physical arrangement of system components. To reduce data-transfer energy

62

fa l l 2 0 15

by several orders of magnitude, the
physical arrangement of the connections between various specialized
operation circuits will be of critical
importance. To drastically reduce the
energy for data transfer, a somewhat
extreme approach may be necessary.
An obvious example of this kind
of form can be found in the human
brain. There, areas of gray matter,
which are a collection of neurons for
conducting operations, are connected
by white matter, which is a collection of wiring (axons) for transmitting
signals. The white matter, at 700 ml,
has half the volume of the gray matter, with an energy consumption of
approximately one-third or about 5 W
[15], but the entire wire length is extremely long at 1.6-1.8 x 108 m.
Just as we do not need to completely imitate a bird to build a plane,
future computers will not need to
imitate the brain exactly, but the
existence of this kind of interworking method is very suggestive. Will
there be electronic white matter in
our future computing systems?

Acknowledgments
I would like to thank Ryuhei
Sasagawa for creating performance
trends of CMOS logic from CAD
data, Prof. Ali Sheikholeslami of the
University of Toronto for valuable
discussions and feedback, and Prof.
Kofi Makinwa of Delft University of
Technology for editorial support.

References

[1] J. G. Koomey, S. Berard, M. Sanchez,
and H. Wong, "Implications of historical
trends in the electrical efficiency of computing," IEEE Ann. Hist. Comput., vol. 46,
"Implications of Historical Trends in the
Electrical Efficiency of Computing," pp.
46-54, July-Sept. 2011.
[2] Cisco Visual Networking Index: Forecast and
Methodology, 2010-2015 and 2013-2018
[Online].
Available:
http://www.cisco.
com/c/en/us/solutions/service-provider/
visual-networking-index-vni/index.html
[3] R.-J. Essiambre, "Capacity trends and limits
of optical communication networks," Proc.
IEEE, vol. 100, no. 5, pp. 1035-1055, 2012.
[4] R. Dennard, F. H. Gaensslen, H.-N. Yu, V.
L. Rideout, E. Bassous, and A. R. Leblanc,
"Design of ion-implanted MOSFETs with
very small physical dimensions," IEEE J.
Solid State Circuits, vol. SC-9, no. 5, pp.
256-268, Oct. 1974.
[5] H. J. M. Veendrick, Nanometer CMOS ICs.
New York: Springer, 2008, Table 11.1,
Section 11.

IEEE SOLID-STATE CIRCUITS MAGAZINE

[6] S. Borkar, "Role of interconnects in the
future of computing," J. Lightwave Technol., vol. 31, no. 24, pp. 3927-3933, 2013.
[7] R. F. Barret et al., "On the role of co-design
in high performance computing," in Proc.
Transition of HPC Towards Exascale Computing, 2013, pp.141-155.
[8] M. Horowitz, "Computing's energy problem: (and what we can do about it)," in
Proc. ISSCC, 2014, pp. 1-1
[9] A. Hartstein, V. Srinivasan, T. Puzak, and
P. Emma, "On the nature of cache miss
behavior: Is it 2 ? " J. Instruction-Level
Parallel., vol. 10, June 2008.
[10] W. C. Y. Lo, K. R. J. Luu, P. C. J. Rose, and L.
Lilge, "Hardware acceleration of a Monte
Carlo simulation for photodynamic therapy treatment planning," J. Ciomed. Opt.,
vol. 14, p. 014019, Jan.-Feb. 2009.
[11] A. H. T. Tse, D. Thomas, and W. Luk,
"Design exploration of quadrature methods in option pricing," IEEE Trans. VLSI
Syst., vol. 20, pp. 818-826, May 2012.
[12] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza,
A. S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura, B.
Brezzo, I. Vo, S. K. Esser, R. Appuswamy,
B. Taba, A. Amir, M. D. Flickner, W. P. Risk,
R. Manohar, and D. S. Modha, "A million
spiking-neuron integrated circuit with
a scalable communication network and
interface," Science, vol. 345, no. 6197, pp.
668-673, Aug. 2014.
[13] P. Bunyk, E. M. Hoskinson, M. W. Johnson,
E. Tolkacheva, F. Altomare, A. J. Berkley,
R. Harris, J. P. Hilton, T. Lanting, A. J.
Przybysz, and J. Whittaker, "Architectural
considerations in the design of a superconducting quantum annealing processor," IEEE Trans. Appl. Superconductivity,
vol. 24, no. 4, 2014.
[14] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J.
Wang, L. Li, T. Chen, Z. Xu, N. Sun, and O.
Temam, "DaDianNao: A machine-learning
supercomputer," in Proc. 47th IEEE/ACM
Int. Symp. Microarchitecture, 2014, pp.
609-622.
[15] J. J. Harris and D. Attwell, "The energetics
of CNS white matter," J. Neurosci., vol. 32,
no. 1, pp. 356-371, Jan. 2012.

About the Author
Hirotaka Tamura received his B.S.,
M.S., and Ph.D. degrees in electronic
engineering from Tokyo University,
Japan, in 1977, 1979, and 1982, respectively. He joined Fujitsu Laboratories
in 1982. After being involved in the
development of different exploratory
devices, such as Josephson junction
devices and high-temperature superconductor devices, he moved into the
field of CMOS high-speed signaling in
1996 and got involved in the development of a multichannel high-speed
I/O for server interconnects. Since
then he has been working in the area
of architecture- and transistor-level
design for CMOS high-speed signaling
circuits. He is a Fellow of the IEEE.


http://www.cisco

Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Fall 2015

IEEE Solid-State Circuits Magazine - Fall 2015 - Cover1
IEEE Solid-State Circuits Magazine - Fall 2015 - Cover2
IEEE Solid-State Circuits Magazine - Fall 2015 - 1
IEEE Solid-State Circuits Magazine - Fall 2015 - 2
IEEE Solid-State Circuits Magazine - Fall 2015 - 3
IEEE Solid-State Circuits Magazine - Fall 2015 - 4
IEEE Solid-State Circuits Magazine - Fall 2015 - 5
IEEE Solid-State Circuits Magazine - Fall 2015 - 6
IEEE Solid-State Circuits Magazine - Fall 2015 - 7
IEEE Solid-State Circuits Magazine - Fall 2015 - 8
IEEE Solid-State Circuits Magazine - Fall 2015 - 9
IEEE Solid-State Circuits Magazine - Fall 2015 - 10
IEEE Solid-State Circuits Magazine - Fall 2015 - 11
IEEE Solid-State Circuits Magazine - Fall 2015 - 12
IEEE Solid-State Circuits Magazine - Fall 2015 - 13
IEEE Solid-State Circuits Magazine - Fall 2015 - 14
IEEE Solid-State Circuits Magazine - Fall 2015 - 15
IEEE Solid-State Circuits Magazine - Fall 2015 - 16
IEEE Solid-State Circuits Magazine - Fall 2015 - 17
IEEE Solid-State Circuits Magazine - Fall 2015 - 18
IEEE Solid-State Circuits Magazine - Fall 2015 - 19
IEEE Solid-State Circuits Magazine - Fall 2015 - 20
IEEE Solid-State Circuits Magazine - Fall 2015 - 21
IEEE Solid-State Circuits Magazine - Fall 2015 - 22
IEEE Solid-State Circuits Magazine - Fall 2015 - 23
IEEE Solid-State Circuits Magazine - Fall 2015 - 24
IEEE Solid-State Circuits Magazine - Fall 2015 - 25
IEEE Solid-State Circuits Magazine - Fall 2015 - 26
IEEE Solid-State Circuits Magazine - Fall 2015 - 27
IEEE Solid-State Circuits Magazine - Fall 2015 - 28
IEEE Solid-State Circuits Magazine - Fall 2015 - 29
IEEE Solid-State Circuits Magazine - Fall 2015 - 30
IEEE Solid-State Circuits Magazine - Fall 2015 - 31
IEEE Solid-State Circuits Magazine - Fall 2015 - 32
IEEE Solid-State Circuits Magazine - Fall 2015 - 33
IEEE Solid-State Circuits Magazine - Fall 2015 - 34
IEEE Solid-State Circuits Magazine - Fall 2015 - 35
IEEE Solid-State Circuits Magazine - Fall 2015 - 36
IEEE Solid-State Circuits Magazine - Fall 2015 - 37
IEEE Solid-State Circuits Magazine - Fall 2015 - 38
IEEE Solid-State Circuits Magazine - Fall 2015 - 39
IEEE Solid-State Circuits Magazine - Fall 2015 - 40
IEEE Solid-State Circuits Magazine - Fall 2015 - 41
IEEE Solid-State Circuits Magazine - Fall 2015 - 42
IEEE Solid-State Circuits Magazine - Fall 2015 - 43
IEEE Solid-State Circuits Magazine - Fall 2015 - 44
IEEE Solid-State Circuits Magazine - Fall 2015 - 45
IEEE Solid-State Circuits Magazine - Fall 2015 - 46
IEEE Solid-State Circuits Magazine - Fall 2015 - 47
IEEE Solid-State Circuits Magazine - Fall 2015 - 48
IEEE Solid-State Circuits Magazine - Fall 2015 - 49
IEEE Solid-State Circuits Magazine - Fall 2015 - 50
IEEE Solid-State Circuits Magazine - Fall 2015 - 51
IEEE Solid-State Circuits Magazine - Fall 2015 - 52
IEEE Solid-State Circuits Magazine - Fall 2015 - 53
IEEE Solid-State Circuits Magazine - Fall 2015 - 54
IEEE Solid-State Circuits Magazine - Fall 2015 - 55
IEEE Solid-State Circuits Magazine - Fall 2015 - 56
IEEE Solid-State Circuits Magazine - Fall 2015 - 57
IEEE Solid-State Circuits Magazine - Fall 2015 - 58
IEEE Solid-State Circuits Magazine - Fall 2015 - 59
IEEE Solid-State Circuits Magazine - Fall 2015 - 60
IEEE Solid-State Circuits Magazine - Fall 2015 - 61
IEEE Solid-State Circuits Magazine - Fall 2015 - 62
IEEE Solid-State Circuits Magazine - Fall 2015 - 63
IEEE Solid-State Circuits Magazine - Fall 2015 - 64
IEEE Solid-State Circuits Magazine - Fall 2015 - 65
IEEE Solid-State Circuits Magazine - Fall 2015 - 66
IEEE Solid-State Circuits Magazine - Fall 2015 - 67
IEEE Solid-State Circuits Magazine - Fall 2015 - 68
IEEE Solid-State Circuits Magazine - Fall 2015 - 69
IEEE Solid-State Circuits Magazine - Fall 2015 - 70
IEEE Solid-State Circuits Magazine - Fall 2015 - 71
IEEE Solid-State Circuits Magazine - Fall 2015 - 72
IEEE Solid-State Circuits Magazine - Fall 2015 - 73
IEEE Solid-State Circuits Magazine - Fall 2015 - 74
IEEE Solid-State Circuits Magazine - Fall 2015 - 75
IEEE Solid-State Circuits Magazine - Fall 2015 - 76
IEEE Solid-State Circuits Magazine - Fall 2015 - 77
IEEE Solid-State Circuits Magazine - Fall 2015 - 78
IEEE Solid-State Circuits Magazine - Fall 2015 - 79
IEEE Solid-State Circuits Magazine - Fall 2015 - 80
IEEE Solid-State Circuits Magazine - Fall 2015 - 81
IEEE Solid-State Circuits Magazine - Fall 2015 - 82
IEEE Solid-State Circuits Magazine - Fall 2015 - 83
IEEE Solid-State Circuits Magazine - Fall 2015 - 84
IEEE Solid-State Circuits Magazine - Fall 2015 - 85
IEEE Solid-State Circuits Magazine - Fall 2015 - 86
IEEE Solid-State Circuits Magazine - Fall 2015 - 87
IEEE Solid-State Circuits Magazine - Fall 2015 - 88
IEEE Solid-State Circuits Magazine - Fall 2015 - 89
IEEE Solid-State Circuits Magazine - Fall 2015 - 90
IEEE Solid-State Circuits Magazine - Fall 2015 - 91
IEEE Solid-State Circuits Magazine - Fall 2015 - 92
IEEE Solid-State Circuits Magazine - Fall 2015 - 93
IEEE Solid-State Circuits Magazine - Fall 2015 - 94
IEEE Solid-State Circuits Magazine - Fall 2015 - 95
IEEE Solid-State Circuits Magazine - Fall 2015 - 96
IEEE Solid-State Circuits Magazine - Fall 2015 - 97
IEEE Solid-State Circuits Magazine - Fall 2015 - 98
IEEE Solid-State Circuits Magazine - Fall 2015 - 99
IEEE Solid-State Circuits Magazine - Fall 2015 - 100
IEEE Solid-State Circuits Magazine - Fall 2015 - 101
IEEE Solid-State Circuits Magazine - Fall 2015 - 102
IEEE Solid-State Circuits Magazine - Fall 2015 - 103
IEEE Solid-State Circuits Magazine - Fall 2015 - 104
IEEE Solid-State Circuits Magazine - Fall 2015 - 105
IEEE Solid-State Circuits Magazine - Fall 2015 - 106
IEEE Solid-State Circuits Magazine - Fall 2015 - 107
IEEE Solid-State Circuits Magazine - Fall 2015 - 108
IEEE Solid-State Circuits Magazine - Fall 2015 - 109
IEEE Solid-State Circuits Magazine - Fall 2015 - 110
IEEE Solid-State Circuits Magazine - Fall 2015 - 111
IEEE Solid-State Circuits Magazine - Fall 2015 - 112
IEEE Solid-State Circuits Magazine - Fall 2015 - Cover3
IEEE Solid-State Circuits Magazine - Fall 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com