IEEE Solid-State Circuits Magazine - Fall 2015 - 74
Furthermore, a similar situation also
exists for interposer design. As can
be seen, this kind of tradeoff is currently performed manually, but we
will need to formalize the process
and develop automated tools that can
be used by the design community.
Summary
Three-dimensional integration-both
interposers and die stacking-is gaining
increased acceptance. From a technology perspective, several challenges still
remain: thin die handling, fine pitch
interconnect, and die-warpage induced
assembly issues. From a design perspective, we do not necessarily have
robust tools to do a comprehensive
design as we would a conventional
system on chip. However, in the custom design realm, such as in memory
design of both main memory and cache
memory, we have made significant
progress and the use of 3-D die stacking is proliferating at a very reasonable
pace. It also turns out that memory subsystems benefit immensely from the
adoption of 3-D memory.
Designing for 3-D needs to comprehend the nuances of TSV placement as well as reach a good understanding of the thermomechanical
constraints and implications. Uniform power delivery through TSVs
and n bumps is an area that needs
special attention. TSV models including KOZs and even detailed device
characteristics of devices close to
TSVs are well understood. 3-D technology still places some design constraints, mainly relating to interposer
size, metal content, and bump pitch.
Even so the technology is ready for
many prime-time applications.
Acknowledgments
The authors would like to thank
their colleagues at IBM, GlobalFoundries, and the University of
California at Los Angeles for their
valuable insights and contributions.
References
[1] S. S. Iyer, "Three dimensional integration-an industry perspective," MRS
Bull., vol. 40, pp. 225-232, Mar. 2015.
[2] S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T.
74
fa l l 2 0 15
[3]
[4]
[5]
[6]
[7]
Haruta, M. Kasai, K. Fukumoto, T. Wakano,
K. Inoue, H. Takahashi, T. Nagano, Y. Nitta,
T. Hirayama, and N. Fukushima, "A 1/4inch 8Mpixel back-illuminated stacked
CMOS image sensor," in IEEE Int. SolidState Circuits Conf. Dig. Technical Papers
(ISSCC), Feb. 17-21, 2013, pp. 484-485.
A. Yoshida, J. Taniguchi, K. Murata, M.
Kada, Y. Yamamoto, Y. Takagi, T. Notomi,
and A. Fujita, "A study on package stacking process for package-on-package
(PoP)," in Proc. 56th Electronic Components and Technology Conf., 2006, p. 6.
[Online]. Available: http://www.sony.
net/Products/SC-HP/cx_news_archives/
img/pdf/vol_50/featuring_1.pdf
M. G. Farooq and S. S. Iyer, "3D integration review," Sci. China, vol. 54, no. 5, pp.
1012-1025, May 2011.
F. Laermer and A. Schilp, "A method of
anisotropically etching silicon," U.S. patent 55,01,893, March 1996.
F. Liu, R. R. Yu, A. M. Young, J. P. Doyle, X.
Wang, L. Shi, K. N. Chen, X. Li, D. A. Dipaola,
D. Brown, C. T. Ryan, J. A. Hagan, K. H. Wong,
M. Lu, X. Gu, N. R. Klymko, E. D. Perfecto, A.
G. Merryman, K. A. Kelly, S. Purushothaman,
S. J. Koester, R. Wisnieff, and W. Haensch, "A
300-mm wafer-level three-dimensional integration scheme using tungsten through-silicon via and hybrid Cu-adhesive bonding,"
in Proc. IEEE Int. Electron Devices Meeting
(IEDM), Dec. 15-17, 2008, pp. 1-4.
[8] C. Kothandaraman, S. Cohen, C. Parks, J.
Golz, K. Tunga, S. Rosenblatt, J. Safran, C.
Collins, W. Landers, J. Oakley, J. Liu, A. J.
Martin, K. Petrarca, M. Farooq, T. L. GravesAbe, N. Robson, and S. S. Iyer, "Through
silicon via (TSV) effects on devices in close
proximity-The role of mobile ion penetration-Characterization and mitigation," in
Proc. IEEE Int. Electron Devices Meeting
(IEDM), Dec. 15-17, 2014, pp. 14.6.1-14.6.3.
[9] L.-T. Pang, P. J. Restle, M. R. Wordeman, J. A.
Silberman, R. L. Franch, and G. W. Maier, "A
shorted global clock design for multi-GHz
3D stacked chips," in Proc. Symp. VLSI Circuits (VLSIC), June 13-15, 2012, pp. 170-171.
[10] S. S. Iyer, "The evolution of embedded memory in high performance logic
technologies," in Proc. IEEE Int. Electron
Devices Meeting (IEDM), 2012, pp. 33.1.
[11] J. Jeddeloh et. al, "Hybrid memory cube-
New DRAM architecture increases density
and performance, " in Symp. VLSI Tech.,
Dig. of Tech. Papers, pp. 87-88, June, 2012.
[12] D. U. Lee et al., "A 1.2V 8Gb 8-channel
128GB/s high-bandwidth-memory (HBM)
stacked DRAM with effective microbump I/O
test methods using 29nm process and TSV,"
in IEEE Int. Solid-State Circuits Conf. Dig. Technical Papers (ISSCC), Feb. 2014, pp. 492-493.
[13] J. Warnock et al., "22nm next-generation
IBM system z microprocessor," in IEEE Int.
Solid-State Circuits Conf. Dig. Technical
Papers (ISSCC), Feb. 2015, pp. 70-71.
[14] G. Fredeman et al., "A 14nm 1.1Mb embedded DRAM macro with 1ns access," in IEEE
Int. Solid-State Circuits Conf. Dig. Technical
Papers (ISSCC), Feb. 2015, pp. 316-317.
[15] G. Fredeman et al., "A 14nm 1.1Mb embedded DRAM macro with 1ns access," IEEE J.
Solid-State Circuits, vol. 51, no. 1, 2016 (to
be published).
[16] U. Kang et. al, "8Gb 3D DDR3 SDRAM using
through-silicon-via technology," in IEEE
Int. Solid-State Circuits Conf. Dig. Technical Papers (ISSCC), pp. 130-131, Feb. 2009.
[17] J-S. Kim et. al, "A 1.2V 12.8 GB/s 2 Gb
mobile wide-I/O DRAM with 4×128 I/Os
using TSV-based stacking," in IEEE Int.
Solid-State Circuits Conf. Dig. Technical
Papers (ISSCC), pp. 496-498, Feb. 2009.
IEEE SOLID-STATE CIRCUITS MAGAZINE
About the Authors
Subramanian S. Iyer (s.s.iyer@ucla.
edu) received his B.Tech. degree from
IIT-Bombay and his Ph.D. degree from
the University of California at Los Angeles (UCLA). He has been with the
IBM T.J. Watson Research Center and
later the IBM Systems and Technology Group, where he was appointed
an IBM fellow and served until recently as director of the Systems
Scaling Technology Department that
included advanced packaging development. He is currently the Distinguished Chancellor's Professor of
electrical engineering at UCLA. He has
published over 250 papers and holds
over 70 patents. His current technical
interests lie in the area of advanced
packaging and 3-D integration for
heterogeneous system-level scaling,
as well as in developing a long-term
semiconductor and packaging road
map for logic, memory, and other
devices. He is an IEEE Fellow and a
Distinguished Lecturer of the IEEE
Electron Devices Society as well as a
member of its Board of Governors. In
2012, he received the IEEE Daniel Noble Medal for emerging technologies.
Toshiaki Kirihata received his B.S.
and M.S. degrees in precision engineering from Shinshu University, Nagano, Japan. In 1986, he joined IBM
Research, Tokyo Research Laboratory,
and in 1996 transferred to the IBM T.J.
Watson Research Center and later to
the IBM Semiconductor Research and
Development Center. He is currently
with GlobalFoundries, where he manages the design department for system scaling technology. His research
interests include high-performance
embedded DRAM, embedded nonvolatile memory, 3-D memory, and
hardware security. He is a coauthor
of CMOS Processors and Memories and
Circuits for Emerging Applications,
contributing to chapters on eDRAM
and intrinsic chip ID using eDRAM,
respectively. He is a Senior Member
of the IEEE and an IEEE Custom Integrated Circuits Conference Committee member on memory.
http://www.sony
Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Fall 2015
IEEE Solid-State Circuits Magazine - Fall 2015 - Cover1
IEEE Solid-State Circuits Magazine - Fall 2015 - Cover2
IEEE Solid-State Circuits Magazine - Fall 2015 - 1
IEEE Solid-State Circuits Magazine - Fall 2015 - 2
IEEE Solid-State Circuits Magazine - Fall 2015 - 3
IEEE Solid-State Circuits Magazine - Fall 2015 - 4
IEEE Solid-State Circuits Magazine - Fall 2015 - 5
IEEE Solid-State Circuits Magazine - Fall 2015 - 6
IEEE Solid-State Circuits Magazine - Fall 2015 - 7
IEEE Solid-State Circuits Magazine - Fall 2015 - 8
IEEE Solid-State Circuits Magazine - Fall 2015 - 9
IEEE Solid-State Circuits Magazine - Fall 2015 - 10
IEEE Solid-State Circuits Magazine - Fall 2015 - 11
IEEE Solid-State Circuits Magazine - Fall 2015 - 12
IEEE Solid-State Circuits Magazine - Fall 2015 - 13
IEEE Solid-State Circuits Magazine - Fall 2015 - 14
IEEE Solid-State Circuits Magazine - Fall 2015 - 15
IEEE Solid-State Circuits Magazine - Fall 2015 - 16
IEEE Solid-State Circuits Magazine - Fall 2015 - 17
IEEE Solid-State Circuits Magazine - Fall 2015 - 18
IEEE Solid-State Circuits Magazine - Fall 2015 - 19
IEEE Solid-State Circuits Magazine - Fall 2015 - 20
IEEE Solid-State Circuits Magazine - Fall 2015 - 21
IEEE Solid-State Circuits Magazine - Fall 2015 - 22
IEEE Solid-State Circuits Magazine - Fall 2015 - 23
IEEE Solid-State Circuits Magazine - Fall 2015 - 24
IEEE Solid-State Circuits Magazine - Fall 2015 - 25
IEEE Solid-State Circuits Magazine - Fall 2015 - 26
IEEE Solid-State Circuits Magazine - Fall 2015 - 27
IEEE Solid-State Circuits Magazine - Fall 2015 - 28
IEEE Solid-State Circuits Magazine - Fall 2015 - 29
IEEE Solid-State Circuits Magazine - Fall 2015 - 30
IEEE Solid-State Circuits Magazine - Fall 2015 - 31
IEEE Solid-State Circuits Magazine - Fall 2015 - 32
IEEE Solid-State Circuits Magazine - Fall 2015 - 33
IEEE Solid-State Circuits Magazine - Fall 2015 - 34
IEEE Solid-State Circuits Magazine - Fall 2015 - 35
IEEE Solid-State Circuits Magazine - Fall 2015 - 36
IEEE Solid-State Circuits Magazine - Fall 2015 - 37
IEEE Solid-State Circuits Magazine - Fall 2015 - 38
IEEE Solid-State Circuits Magazine - Fall 2015 - 39
IEEE Solid-State Circuits Magazine - Fall 2015 - 40
IEEE Solid-State Circuits Magazine - Fall 2015 - 41
IEEE Solid-State Circuits Magazine - Fall 2015 - 42
IEEE Solid-State Circuits Magazine - Fall 2015 - 43
IEEE Solid-State Circuits Magazine - Fall 2015 - 44
IEEE Solid-State Circuits Magazine - Fall 2015 - 45
IEEE Solid-State Circuits Magazine - Fall 2015 - 46
IEEE Solid-State Circuits Magazine - Fall 2015 - 47
IEEE Solid-State Circuits Magazine - Fall 2015 - 48
IEEE Solid-State Circuits Magazine - Fall 2015 - 49
IEEE Solid-State Circuits Magazine - Fall 2015 - 50
IEEE Solid-State Circuits Magazine - Fall 2015 - 51
IEEE Solid-State Circuits Magazine - Fall 2015 - 52
IEEE Solid-State Circuits Magazine - Fall 2015 - 53
IEEE Solid-State Circuits Magazine - Fall 2015 - 54
IEEE Solid-State Circuits Magazine - Fall 2015 - 55
IEEE Solid-State Circuits Magazine - Fall 2015 - 56
IEEE Solid-State Circuits Magazine - Fall 2015 - 57
IEEE Solid-State Circuits Magazine - Fall 2015 - 58
IEEE Solid-State Circuits Magazine - Fall 2015 - 59
IEEE Solid-State Circuits Magazine - Fall 2015 - 60
IEEE Solid-State Circuits Magazine - Fall 2015 - 61
IEEE Solid-State Circuits Magazine - Fall 2015 - 62
IEEE Solid-State Circuits Magazine - Fall 2015 - 63
IEEE Solid-State Circuits Magazine - Fall 2015 - 64
IEEE Solid-State Circuits Magazine - Fall 2015 - 65
IEEE Solid-State Circuits Magazine - Fall 2015 - 66
IEEE Solid-State Circuits Magazine - Fall 2015 - 67
IEEE Solid-State Circuits Magazine - Fall 2015 - 68
IEEE Solid-State Circuits Magazine - Fall 2015 - 69
IEEE Solid-State Circuits Magazine - Fall 2015 - 70
IEEE Solid-State Circuits Magazine - Fall 2015 - 71
IEEE Solid-State Circuits Magazine - Fall 2015 - 72
IEEE Solid-State Circuits Magazine - Fall 2015 - 73
IEEE Solid-State Circuits Magazine - Fall 2015 - 74
IEEE Solid-State Circuits Magazine - Fall 2015 - 75
IEEE Solid-State Circuits Magazine - Fall 2015 - 76
IEEE Solid-State Circuits Magazine - Fall 2015 - 77
IEEE Solid-State Circuits Magazine - Fall 2015 - 78
IEEE Solid-State Circuits Magazine - Fall 2015 - 79
IEEE Solid-State Circuits Magazine - Fall 2015 - 80
IEEE Solid-State Circuits Magazine - Fall 2015 - 81
IEEE Solid-State Circuits Magazine - Fall 2015 - 82
IEEE Solid-State Circuits Magazine - Fall 2015 - 83
IEEE Solid-State Circuits Magazine - Fall 2015 - 84
IEEE Solid-State Circuits Magazine - Fall 2015 - 85
IEEE Solid-State Circuits Magazine - Fall 2015 - 86
IEEE Solid-State Circuits Magazine - Fall 2015 - 87
IEEE Solid-State Circuits Magazine - Fall 2015 - 88
IEEE Solid-State Circuits Magazine - Fall 2015 - 89
IEEE Solid-State Circuits Magazine - Fall 2015 - 90
IEEE Solid-State Circuits Magazine - Fall 2015 - 91
IEEE Solid-State Circuits Magazine - Fall 2015 - 92
IEEE Solid-State Circuits Magazine - Fall 2015 - 93
IEEE Solid-State Circuits Magazine - Fall 2015 - 94
IEEE Solid-State Circuits Magazine - Fall 2015 - 95
IEEE Solid-State Circuits Magazine - Fall 2015 - 96
IEEE Solid-State Circuits Magazine - Fall 2015 - 97
IEEE Solid-State Circuits Magazine - Fall 2015 - 98
IEEE Solid-State Circuits Magazine - Fall 2015 - 99
IEEE Solid-State Circuits Magazine - Fall 2015 - 100
IEEE Solid-State Circuits Magazine - Fall 2015 - 101
IEEE Solid-State Circuits Magazine - Fall 2015 - 102
IEEE Solid-State Circuits Magazine - Fall 2015 - 103
IEEE Solid-State Circuits Magazine - Fall 2015 - 104
IEEE Solid-State Circuits Magazine - Fall 2015 - 105
IEEE Solid-State Circuits Magazine - Fall 2015 - 106
IEEE Solid-State Circuits Magazine - Fall 2015 - 107
IEEE Solid-State Circuits Magazine - Fall 2015 - 108
IEEE Solid-State Circuits Magazine - Fall 2015 - 109
IEEE Solid-State Circuits Magazine - Fall 2015 - 110
IEEE Solid-State Circuits Magazine - Fall 2015 - 111
IEEE Solid-State Circuits Magazine - Fall 2015 - 112
IEEE Solid-State Circuits Magazine - Fall 2015 - Cover3
IEEE Solid-State Circuits Magazine - Fall 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com