IEEE Solid-State Circuits Magazine - Fall 2016 - 54

Circuit Design Considerations
for Stimulation

is more like a resistor with chopping), and any dc offset at the
electrodes shows up at the amplifier output, with the gain defined
by the capacitor ratio, which may
saturate the amplifier.

Generally, two electrodes are needed
for stimulation, with one as the reference and the other as the stimulator.
The goal of stimulation is to deliver a

When an electrode, which is usually metal, is
placed inside a physiological medium (e.g.,
tissue or body fluid, which contain electrolytes),
electrochemical activity will occur, and an
interface will form between the two phases.
charge into the tissue that influences the potential outside the neuron
membrane so as to initiate spikes/action potential. A typical stimulation
waveform is shown in Figure 8, with
the x-axis representing time and the
y-axis representing current. The positive and negative signs indicate the
direction of the charge flow, whether

2) Low input impedance. The input impedance of the amplifier decreases
from 1/j~C to 1/fCC, where ~ is the
signal frequency of interest and fC
is the chopping frequency.
Improvements to address these issues
include a dc servo in both the analog
and digital domains for 1) and input
switch compensation for 2) [2].

Tissue/Body Fluid
(Electrolyte)
Na+ K+

Stimulation
Electrode 1 (Metal)
NT

Ca++

Stimulation
Electrode 2

NT

NT
NT

NT
NT

H+
1/f

Into Tissue

Charge Flow

Q (a )

t (a )

0

Q (c )
t (c )

Out of Tissue
Stimulation Phase
Figure 8: A typical stimulation waveform.

54

fa l l 2 0 16

IEEE SOLID-STATE CIRCUITS MAGAZINE

Recharge Phase

in or out of the tissue. The waveform
most often consists of a stimulation
phase followed by a recovery phase.
It could be made an active recharge
by using the same or a scaled current
in the reversed direction or via passive recovery by shorting the electrodes, as indicated by the dashed
line, which follows the resistorcapacitor discharge curve.
In the case of sensing, the electrode-tissue interface can be considered as a pure capacitor, in which no
charge goes across the double-layer
structure. However, in the case of
stimulation (wherein the typical stimulation voltage could vary from 1 to
10 V), there could be actual charge
transfer with electrochemical reaction. The leakage through the double-layer capacitor is usually called
Faradeic impedance. The model of
the electrode interface for stimulation is shown in Figure 9. Note that
the value of the Faradeic impedance
may vary with stimulation amplitude
and other factors.



Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Fall 2016

IEEE Solid-State Circuits Magazine - Fall 2016 - Cover1
IEEE Solid-State Circuits Magazine - Fall 2016 - Cover2
IEEE Solid-State Circuits Magazine - Fall 2016 - 1
IEEE Solid-State Circuits Magazine - Fall 2016 - 2
IEEE Solid-State Circuits Magazine - Fall 2016 - 3
IEEE Solid-State Circuits Magazine - Fall 2016 - 4
IEEE Solid-State Circuits Magazine - Fall 2016 - 5
IEEE Solid-State Circuits Magazine - Fall 2016 - 6
IEEE Solid-State Circuits Magazine - Fall 2016 - 7
IEEE Solid-State Circuits Magazine - Fall 2016 - 8
IEEE Solid-State Circuits Magazine - Fall 2016 - 9
IEEE Solid-State Circuits Magazine - Fall 2016 - 10
IEEE Solid-State Circuits Magazine - Fall 2016 - 11
IEEE Solid-State Circuits Magazine - Fall 2016 - 12
IEEE Solid-State Circuits Magazine - Fall 2016 - 13
IEEE Solid-State Circuits Magazine - Fall 2016 - 14
IEEE Solid-State Circuits Magazine - Fall 2016 - 15
IEEE Solid-State Circuits Magazine - Fall 2016 - 16
IEEE Solid-State Circuits Magazine - Fall 2016 - 17
IEEE Solid-State Circuits Magazine - Fall 2016 - 18
IEEE Solid-State Circuits Magazine - Fall 2016 - 19
IEEE Solid-State Circuits Magazine - Fall 2016 - 20
IEEE Solid-State Circuits Magazine - Fall 2016 - 21
IEEE Solid-State Circuits Magazine - Fall 2016 - 22
IEEE Solid-State Circuits Magazine - Fall 2016 - 23
IEEE Solid-State Circuits Magazine - Fall 2016 - 24
IEEE Solid-State Circuits Magazine - Fall 2016 - 25
IEEE Solid-State Circuits Magazine - Fall 2016 - 26
IEEE Solid-State Circuits Magazine - Fall 2016 - 27
IEEE Solid-State Circuits Magazine - Fall 2016 - 28
IEEE Solid-State Circuits Magazine - Fall 2016 - 29
IEEE Solid-State Circuits Magazine - Fall 2016 - 30
IEEE Solid-State Circuits Magazine - Fall 2016 - 31
IEEE Solid-State Circuits Magazine - Fall 2016 - 32
IEEE Solid-State Circuits Magazine - Fall 2016 - 33
IEEE Solid-State Circuits Magazine - Fall 2016 - 34
IEEE Solid-State Circuits Magazine - Fall 2016 - 35
IEEE Solid-State Circuits Magazine - Fall 2016 - 36
IEEE Solid-State Circuits Magazine - Fall 2016 - 37
IEEE Solid-State Circuits Magazine - Fall 2016 - 38
IEEE Solid-State Circuits Magazine - Fall 2016 - 39
IEEE Solid-State Circuits Magazine - Fall 2016 - 40
IEEE Solid-State Circuits Magazine - Fall 2016 - 41
IEEE Solid-State Circuits Magazine - Fall 2016 - 42
IEEE Solid-State Circuits Magazine - Fall 2016 - 43
IEEE Solid-State Circuits Magazine - Fall 2016 - 44
IEEE Solid-State Circuits Magazine - Fall 2016 - 45
IEEE Solid-State Circuits Magazine - Fall 2016 - 46
IEEE Solid-State Circuits Magazine - Fall 2016 - 47
IEEE Solid-State Circuits Magazine - Fall 2016 - 48
IEEE Solid-State Circuits Magazine - Fall 2016 - 49
IEEE Solid-State Circuits Magazine - Fall 2016 - 50
IEEE Solid-State Circuits Magazine - Fall 2016 - 51
IEEE Solid-State Circuits Magazine - Fall 2016 - 52
IEEE Solid-State Circuits Magazine - Fall 2016 - 53
IEEE Solid-State Circuits Magazine - Fall 2016 - 54
IEEE Solid-State Circuits Magazine - Fall 2016 - 55
IEEE Solid-State Circuits Magazine - Fall 2016 - 56
IEEE Solid-State Circuits Magazine - Fall 2016 - 57
IEEE Solid-State Circuits Magazine - Fall 2016 - 58
IEEE Solid-State Circuits Magazine - Fall 2016 - 59
IEEE Solid-State Circuits Magazine - Fall 2016 - 60
IEEE Solid-State Circuits Magazine - Fall 2016 - 61
IEEE Solid-State Circuits Magazine - Fall 2016 - 62
IEEE Solid-State Circuits Magazine - Fall 2016 - 63
IEEE Solid-State Circuits Magazine - Fall 2016 - 64
IEEE Solid-State Circuits Magazine - Fall 2016 - 65
IEEE Solid-State Circuits Magazine - Fall 2016 - 66
IEEE Solid-State Circuits Magazine - Fall 2016 - 67
IEEE Solid-State Circuits Magazine - Fall 2016 - 68
IEEE Solid-State Circuits Magazine - Fall 2016 - 69
IEEE Solid-State Circuits Magazine - Fall 2016 - 70
IEEE Solid-State Circuits Magazine - Fall 2016 - 71
IEEE Solid-State Circuits Magazine - Fall 2016 - 72
IEEE Solid-State Circuits Magazine - Fall 2016 - 73
IEEE Solid-State Circuits Magazine - Fall 2016 - 74
IEEE Solid-State Circuits Magazine - Fall 2016 - 75
IEEE Solid-State Circuits Magazine - Fall 2016 - 76
IEEE Solid-State Circuits Magazine - Fall 2016 - 77
IEEE Solid-State Circuits Magazine - Fall 2016 - 78
IEEE Solid-State Circuits Magazine - Fall 2016 - 79
IEEE Solid-State Circuits Magazine - Fall 2016 - 80
IEEE Solid-State Circuits Magazine - Fall 2016 - 81
IEEE Solid-State Circuits Magazine - Fall 2016 - 82
IEEE Solid-State Circuits Magazine - Fall 2016 - 83
IEEE Solid-State Circuits Magazine - Fall 2016 - 84
IEEE Solid-State Circuits Magazine - Fall 2016 - 85
IEEE Solid-State Circuits Magazine - Fall 2016 - 86
IEEE Solid-State Circuits Magazine - Fall 2016 - 87
IEEE Solid-State Circuits Magazine - Fall 2016 - 88
IEEE Solid-State Circuits Magazine - Fall 2016 - 89
IEEE Solid-State Circuits Magazine - Fall 2016 - 90
IEEE Solid-State Circuits Magazine - Fall 2016 - 91
IEEE Solid-State Circuits Magazine - Fall 2016 - 92
IEEE Solid-State Circuits Magazine - Fall 2016 - 93
IEEE Solid-State Circuits Magazine - Fall 2016 - 94
IEEE Solid-State Circuits Magazine - Fall 2016 - 95
IEEE Solid-State Circuits Magazine - Fall 2016 - 96
IEEE Solid-State Circuits Magazine - Fall 2016 - 97
IEEE Solid-State Circuits Magazine - Fall 2016 - 98
IEEE Solid-State Circuits Magazine - Fall 2016 - 99
IEEE Solid-State Circuits Magazine - Fall 2016 - 100
IEEE Solid-State Circuits Magazine - Fall 2016 - 101
IEEE Solid-State Circuits Magazine - Fall 2016 - 102
IEEE Solid-State Circuits Magazine - Fall 2016 - 103
IEEE Solid-State Circuits Magazine - Fall 2016 - 104
IEEE Solid-State Circuits Magazine - Fall 2016 - 105
IEEE Solid-State Circuits Magazine - Fall 2016 - 106
IEEE Solid-State Circuits Magazine - Fall 2016 - 107
IEEE Solid-State Circuits Magazine - Fall 2016 - 108
IEEE Solid-State Circuits Magazine - Fall 2016 - 109
IEEE Solid-State Circuits Magazine - Fall 2016 - 110
IEEE Solid-State Circuits Magazine - Fall 2016 - 111
IEEE Solid-State Circuits Magazine - Fall 2016 - 112
IEEE Solid-State Circuits Magazine - Fall 2016 - 113
IEEE Solid-State Circuits Magazine - Fall 2016 - 114
IEEE Solid-State Circuits Magazine - Fall 2016 - 115
IEEE Solid-State Circuits Magazine - Fall 2016 - 116
IEEE Solid-State Circuits Magazine - Fall 2016 - 117
IEEE Solid-State Circuits Magazine - Fall 2016 - 118
IEEE Solid-State Circuits Magazine - Fall 2016 - 119
IEEE Solid-State Circuits Magazine - Fall 2016 - 120
IEEE Solid-State Circuits Magazine - Fall 2016 - 121
IEEE Solid-State Circuits Magazine - Fall 2016 - 122
IEEE Solid-State Circuits Magazine - Fall 2016 - 123
IEEE Solid-State Circuits Magazine - Fall 2016 - 124
IEEE Solid-State Circuits Magazine - Fall 2016 - Cover3
IEEE Solid-State Circuits Magazine - Fall 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com