IEEE Solid-State Circuits Magazine - Fall 2017 - 54

[32] S. Park, K. Bong, D. Shin, J. Lee, S. Choi,
and H.-J. Yoo, "A 1.93TOPS/W scalable
deep learning/inference processor with
tetra-parallel MIMD architecture for big-
data applications," in Proc. IEEE Int. SolidState Circuits Conf., 2015, pp. 1-3.
[33] L. Cavigelli, D. Gschwend, C. Mayer, S.
Willi, B. Muheim, and L. Benini, "Origami:
A convolutional network accelerator," in
Great Lakes Symp. VLSI, 2015, pp. 199-
204.
[34] S. Gupta, A. Agrawal, K. Gopalakrishnan,
and P. Narayanan, "Deep learning with
limited numerical precision," in Proc. Int.
Conf. Machine Learning, 2015, pp. 1737-
1746.
[35] Z. Dand, et al. "ShiDianNao: Shifting vi-
sion processing closer to, the sensor," in
Proc. IEEE Int. Symp. Computer Architecture, 2015, pp. 92-104.
[36] M. Peemen, A. A. A. Setio, B. Mesman, and
H. Corporaal, "Memory-centric accelera-
tor design for convolutional neural net-
works," in Proc. IEEE Int. Conf. Computer
Design, 2013, pp. 13-19.
[37] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao,
and J. Cong, "Optimizing FPGA-based ac-
celerator design for deep convolutional
neural networks," in Proc. ACM/SIGDA Int,
Symp, Field-Programmable Gate Arrays,
2015, pp. 161-170.
[38] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y.
Chen, and O. Temam, "DianNao: A small-
footprint high-throughput accelerator for
ubiquitous machine, learning," in Proc.
Int. Conf. Architectural Support for Programming Languages and Operating Systems, 2014, pp. 269-284.
[39] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J.
Wang, and O. Temam, "DaDianNao: A ma-
chine-learning supercomputer," in Proc.
MICRO, 2014, pp. 609-622.
[40] Y.-H. Chen, J. Emer, and V. Sze, "Using
dataflow to optimize energy efficiency of
deep neural network accelerators," IEEE
Micro, vol. 37, no. 3, pp. 12-21, 2017.
[41] Y.-H. Chen, J. Emer, and V. Sze, "Eyeriss:
A spatial architecture for energy-efficient
dataflow for convolutional neural net-
works," in Proc. IEEE  Int. Symp. Computer
Architecture, 2016, pp. 367-379.
[42] A. Suleiman, Z. Zhang, and V. Sze, "A
58.6 mW real-time programmable object
detector with multi-scale multi-object
support using deformable parts model on
1920× 1080 video at 30fps," in Proc. Symp.
VLSI, 2016, pp. 1-2.
[43] N. P. Jouppi, C. Young, N. Patil, D. Patter-
son, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, et al. "In-datacenter
performance analysis of a tensor process-
ing unit," in Proc. IEEE  Int. Symp. Computer Architecture, 2017, pp. 1-12.
[44] B. Moons and M. Verhelst, "A 0.3-2.6
TOPS/W precision-scalable processor for
real-time large-scale ConvNets," in Proc.
Symp. VLSI, 2016, pp. 1-2.
[45] P. Judd, J. Albericio, and A. Moshovos,
"Stripes: Bit-serial deep neural network
computing," IEEE Computer Architecture
Lett., vol. 16, no. 1, pp. 80-83, Jan.-June
1 2017.
[46] M. Courbariaux and Y. Bengio, "Binarynet:
Training deep neural networks with
weights and activations constrained to
+ 1 or -1," arXiv Preprint, arXiv:1602.02830,
2016.
[47] M. Rastegari, V. Ordonez, J. Redmon, and
A. Farhadi, "XNOR-Net: ImageNet classifi-
cation using binary convolutional neural
networks," in Proc. European Conf. Computer Vision, 2016, pp. 525-542.

54

FA L L 2 0 17

[48] A. Suleiman and V. Sze, "Energy-efficient
HOG-based object detection at 1080HD
60 fps with multi-scale support," in
Proc. Signal Processing Systems, 2014,
pp. 1-6.
[49] Y. LeCun, J. S. Denker, and S. A. Solla, "Op-
timal brain damage," in Proc. Conf. Neural
Information Processing System, 1990, pp.
598-605.
[50] S. Han, J. Pool, J. Tran, and W. Dally,
"Learning both weights and connections
for efficient neural network," in Proc.
Conf. Neural Information Processing System, 2015, pp. 1135-1143.
[51] T.-J. Yang, Y.-H. Chen, and V. Sze, "Design-
ing energy-efficient convolutional neural
networks using energy-aware pruning," in
Proc. Conf. Computer Vision and Pattern
Recognition, 2017.
[52] T.-J. Yang, Y.-H. Chen, and V. Sze. DNN
energy estimation. [Online]. Available:
http://eyeriss.mit.edu/energy.html
[53] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze,
"Eyeriss: An energy-efficient reconfigu-
rable accelerator for deep convolutional
neural networks," IEEE J. Solid State Circ.,
vol. 52, no. 1, pp. 127-138, Jan. 2017.
[54] J. Albericio, P. Judd, T. Hetherington, T.
Aamodt, N. E. Jerger, and A. Moshovos,
"Cnvlutin: Ineffectual-neuron-free deep
neural network computing," in Proc. IEEE
Int. Symp. Computer Architecture, 2016,
pp. 1-13.
[55] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram,
M. A. Horowitz, and W. J. Dally, "EIE: Ef-
ficient inference engine on compressed,
deep neural network," in Proc. IEEE Int.
Symp. Computer Architecture, 2016, pp.
243-254.
[56] S. Han, H. Mao, and W. J. Dally, "Deep
Compression: compressing deep neural
network with pruning, trained quantiza-
tion and huffman coding," in Proc.   Int.
Conf. Learning Representations, 2016.
[57] J. Zhang, Z. Wang, and N. Verma, "A ma-
chine-learning classifier implemented in
a standard 6T SRAM array," in Proc. Symp.
VLSI, 2016, pp. 1-2.
[58] A. Shafiee, A. Nag, N. Muralimanohar, R.
Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, "ISAAC: A
convolutional neural network accelerator
with in-situ analog arithmetic in cross-
bars," in Proc. IEEE   Int. Symp. Computer
Architecture, 2016, pp. 14-26.
[59] B. Murmann, D. Bankman, E. Chai, D. Mi-
yashita, and L. Yang, "Mixed-signal cir-
cuits for embedded machine-learning ap-
plications," in Proc. Asilomar Conf., 2015,
pp. 1341-1345.
[60] J. Zhang, Z. Wang, and N. Verma, "A ma-
trix-multiplying ADC implementing a
machine-learning classifier directly with
data conversion," in Proc. IEEE Int. SolidState Circuits Conf., 2015, pp. 1-3.
[61] E. H. Lee and S. S. Wong, "A 2.5 GHz 7.7
TOPS/W switched-capacitor matrix mul-
tiplier with co-designed local memory in
40nm," in Proc. IEEE Int. Solid-State Circuits Conf., 2016, pp. 418-419.
[62] R. LiKamWa, Y. Hou, J. Gao, M. Polansky,
and L. Zhong, "RedEye: Analog ConvNet
image sensor architecture for continu-
ous mobile vision," in Proc. IEEE Int.
Symp. Computer Architecture, 2016, pp.
255-266.
[63] J. Choi, S. Park, J. Cho, and E. Yoon, "A
3.4-μW object-adaptive CMOS image sen-
sor with embedded feature extraction
algorithm for motion-triggered object-
of-interest imaging," IEEE J. Solid-State
Circuits, vol. 49, no. 1, pp. 289-300, 2014.

IEEE SOLID-STATE CIRCUITS MAGAZINE

[64] D. Kim, J. Kung, S. Chai, S. Yalamanchili,
and S. Mukhopadhyay, "Neurocube: A pro-
grammable digital neuromorphic archi-
tecture with high-density, 3D memory," in
Proc. IEEE Int. Symp. Computer Architecture, 2016, pp. 380-392.
[65] S. Yu and P.-Y. Chen, "Emerging memory
technologies: Recent trends and pros-
pects," IEEE Solid-State Circuits Mag., vol.
8, no. 2, pp. 43-56, 2016.
[66] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J.
Zhao, Y. Liu, Y. Wang, and Y. Xie, "PRIME:
A novel, processing-in-memory architec-
ture for neural network computation in
ReRAM-based main memory," in Proc. IEEE
Int. Symp. Computer Architecture, 2016,
pp. 27-39.
[67] A. Wang, S. Sivaramakrishnan, and A.
Molnar, "A 180nm CMOS image sensor
with on-chip optoelectronic image com-
pression," in Proc. IEEE Custom Integrated
Circuits Conf., 2012, pp. 1-4.
[68] H. Chen, S. Jayasuriya, J. Yang, J. Stephen,
S. Sivaramakrishnan, A. Veeraraghavan,
and A. Molnar, "ASP Vision: Optically com-
puting the first layer of convolutional
neural networks using angle sensitive
pixels," in Proc. Conf. Computer Vision and
Pattern Recognition, 2016, pp. 903-912.
[69] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman,
and Z. Zhang, "Hardware for machine
learning: Challenges and opportunities,"
in Proc. IEEE Custom Integrated Circuits
Conf., 2017, pp. 1-8.

About the Author
Vivienne Sze (sze@mit.edu) is an
associate professor in the Electrical
Engineering and Computer Science
Department at the Massachusetts
Institute of Technology (MIT). Her
research interests include energy-
aware signal processing algorithms
and low-power circuit and system
design for multimedia applications
such as machine learning, computer
vision, and video coding. Prior to
joining MIT, she was with Texas
Instruments, where she developed
algorithms and hardware for the lat-
est video coding standard H.265/
HEVC. She received the B.A.Sc. degree
from the University of Toronto in
2004 and the S.M. and Ph.D. degrees
from MIT in 2006 and 2010, respec-
tively. She is a recipient of several
awards, including the Google Faculty
Research Award, the AFOSR Young
Investigator Award, the DARPA Young
Faculty Award, and the Jin-Au Kong
Outstanding Doctoral Thesis Prize.
She currently serves on the Technical
Program Committee of VLSI Sympo-
sium and MICRO.


http://eyeriss.mit.edu/energy.html http://B.A.Sc

Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Fall 2017

IEEE Solid-State Circuits Magazine - Fall 2017 - Cover1
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover2
IEEE Solid-State Circuits Magazine - Fall 2017 - 1
IEEE Solid-State Circuits Magazine - Fall 2017 - 2
IEEE Solid-State Circuits Magazine - Fall 2017 - 3
IEEE Solid-State Circuits Magazine - Fall 2017 - 4
IEEE Solid-State Circuits Magazine - Fall 2017 - 5
IEEE Solid-State Circuits Magazine - Fall 2017 - 6
IEEE Solid-State Circuits Magazine - Fall 2017 - 7
IEEE Solid-State Circuits Magazine - Fall 2017 - 8
IEEE Solid-State Circuits Magazine - Fall 2017 - 9
IEEE Solid-State Circuits Magazine - Fall 2017 - 10
IEEE Solid-State Circuits Magazine - Fall 2017 - 11
IEEE Solid-State Circuits Magazine - Fall 2017 - 12
IEEE Solid-State Circuits Magazine - Fall 2017 - 13
IEEE Solid-State Circuits Magazine - Fall 2017 - 14
IEEE Solid-State Circuits Magazine - Fall 2017 - 15
IEEE Solid-State Circuits Magazine - Fall 2017 - 16
IEEE Solid-State Circuits Magazine - Fall 2017 - 17
IEEE Solid-State Circuits Magazine - Fall 2017 - 18
IEEE Solid-State Circuits Magazine - Fall 2017 - 19
IEEE Solid-State Circuits Magazine - Fall 2017 - 20
IEEE Solid-State Circuits Magazine - Fall 2017 - 21
IEEE Solid-State Circuits Magazine - Fall 2017 - 22
IEEE Solid-State Circuits Magazine - Fall 2017 - 23
IEEE Solid-State Circuits Magazine - Fall 2017 - 24
IEEE Solid-State Circuits Magazine - Fall 2017 - 25
IEEE Solid-State Circuits Magazine - Fall 2017 - 26
IEEE Solid-State Circuits Magazine - Fall 2017 - 27
IEEE Solid-State Circuits Magazine - Fall 2017 - 28
IEEE Solid-State Circuits Magazine - Fall 2017 - 29
IEEE Solid-State Circuits Magazine - Fall 2017 - 30
IEEE Solid-State Circuits Magazine - Fall 2017 - 31
IEEE Solid-State Circuits Magazine - Fall 2017 - 32
IEEE Solid-State Circuits Magazine - Fall 2017 - 33
IEEE Solid-State Circuits Magazine - Fall 2017 - 34
IEEE Solid-State Circuits Magazine - Fall 2017 - 35
IEEE Solid-State Circuits Magazine - Fall 2017 - 36
IEEE Solid-State Circuits Magazine - Fall 2017 - 37
IEEE Solid-State Circuits Magazine - Fall 2017 - 38
IEEE Solid-State Circuits Magazine - Fall 2017 - 39
IEEE Solid-State Circuits Magazine - Fall 2017 - 40
IEEE Solid-State Circuits Magazine - Fall 2017 - 41
IEEE Solid-State Circuits Magazine - Fall 2017 - 42
IEEE Solid-State Circuits Magazine - Fall 2017 - 43
IEEE Solid-State Circuits Magazine - Fall 2017 - 44
IEEE Solid-State Circuits Magazine - Fall 2017 - 45
IEEE Solid-State Circuits Magazine - Fall 2017 - 46
IEEE Solid-State Circuits Magazine - Fall 2017 - 47
IEEE Solid-State Circuits Magazine - Fall 2017 - 48
IEEE Solid-State Circuits Magazine - Fall 2017 - 49
IEEE Solid-State Circuits Magazine - Fall 2017 - 50
IEEE Solid-State Circuits Magazine - Fall 2017 - 51
IEEE Solid-State Circuits Magazine - Fall 2017 - 52
IEEE Solid-State Circuits Magazine - Fall 2017 - 53
IEEE Solid-State Circuits Magazine - Fall 2017 - 54
IEEE Solid-State Circuits Magazine - Fall 2017 - 55
IEEE Solid-State Circuits Magazine - Fall 2017 - 56
IEEE Solid-State Circuits Magazine - Fall 2017 - 57
IEEE Solid-State Circuits Magazine - Fall 2017 - 58
IEEE Solid-State Circuits Magazine - Fall 2017 - 59
IEEE Solid-State Circuits Magazine - Fall 2017 - 60
IEEE Solid-State Circuits Magazine - Fall 2017 - 61
IEEE Solid-State Circuits Magazine - Fall 2017 - 62
IEEE Solid-State Circuits Magazine - Fall 2017 - 63
IEEE Solid-State Circuits Magazine - Fall 2017 - 64
IEEE Solid-State Circuits Magazine - Fall 2017 - 65
IEEE Solid-State Circuits Magazine - Fall 2017 - 66
IEEE Solid-State Circuits Magazine - Fall 2017 - 67
IEEE Solid-State Circuits Magazine - Fall 2017 - 68
IEEE Solid-State Circuits Magazine - Fall 2017 - 69
IEEE Solid-State Circuits Magazine - Fall 2017 - 70
IEEE Solid-State Circuits Magazine - Fall 2017 - 71
IEEE Solid-State Circuits Magazine - Fall 2017 - 72
IEEE Solid-State Circuits Magazine - Fall 2017 - 73
IEEE Solid-State Circuits Magazine - Fall 2017 - 74
IEEE Solid-State Circuits Magazine - Fall 2017 - 75
IEEE Solid-State Circuits Magazine - Fall 2017 - 76
IEEE Solid-State Circuits Magazine - Fall 2017 - 77
IEEE Solid-State Circuits Magazine - Fall 2017 - 78
IEEE Solid-State Circuits Magazine - Fall 2017 - 79
IEEE Solid-State Circuits Magazine - Fall 2017 - 80
IEEE Solid-State Circuits Magazine - Fall 2017 - 81
IEEE Solid-State Circuits Magazine - Fall 2017 - 82
IEEE Solid-State Circuits Magazine - Fall 2017 - 83
IEEE Solid-State Circuits Magazine - Fall 2017 - 84
IEEE Solid-State Circuits Magazine - Fall 2017 - 85
IEEE Solid-State Circuits Magazine - Fall 2017 - 86
IEEE Solid-State Circuits Magazine - Fall 2017 - 87
IEEE Solid-State Circuits Magazine - Fall 2017 - 88
IEEE Solid-State Circuits Magazine - Fall 2017 - 89
IEEE Solid-State Circuits Magazine - Fall 2017 - 90
IEEE Solid-State Circuits Magazine - Fall 2017 - 91
IEEE Solid-State Circuits Magazine - Fall 2017 - 92
IEEE Solid-State Circuits Magazine - Fall 2017 - 93
IEEE Solid-State Circuits Magazine - Fall 2017 - 94
IEEE Solid-State Circuits Magazine - Fall 2017 - 95
IEEE Solid-State Circuits Magazine - Fall 2017 - 96
IEEE Solid-State Circuits Magazine - Fall 2017 - 97
IEEE Solid-State Circuits Magazine - Fall 2017 - 98
IEEE Solid-State Circuits Magazine - Fall 2017 - 99
IEEE Solid-State Circuits Magazine - Fall 2017 - 100
IEEE Solid-State Circuits Magazine - Fall 2017 - 101
IEEE Solid-State Circuits Magazine - Fall 2017 - 102
IEEE Solid-State Circuits Magazine - Fall 2017 - 103
IEEE Solid-State Circuits Magazine - Fall 2017 - 104
IEEE Solid-State Circuits Magazine - Fall 2017 - 105
IEEE Solid-State Circuits Magazine - Fall 2017 - 106
IEEE Solid-State Circuits Magazine - Fall 2017 - 107
IEEE Solid-State Circuits Magazine - Fall 2017 - 108
IEEE Solid-State Circuits Magazine - Fall 2017 - 109
IEEE Solid-State Circuits Magazine - Fall 2017 - 110
IEEE Solid-State Circuits Magazine - Fall 2017 - 111
IEEE Solid-State Circuits Magazine - Fall 2017 - 112
IEEE Solid-State Circuits Magazine - Fall 2017 - 113
IEEE Solid-State Circuits Magazine - Fall 2017 - 114
IEEE Solid-State Circuits Magazine - Fall 2017 - 115
IEEE Solid-State Circuits Magazine - Fall 2017 - 116
IEEE Solid-State Circuits Magazine - Fall 2017 - 117
IEEE Solid-State Circuits Magazine - Fall 2017 - 118
IEEE Solid-State Circuits Magazine - Fall 2017 - 119
IEEE Solid-State Circuits Magazine - Fall 2017 - 120
IEEE Solid-State Circuits Magazine - Fall 2017 - 121
IEEE Solid-State Circuits Magazine - Fall 2017 - 122
IEEE Solid-State Circuits Magazine - Fall 2017 - 123
IEEE Solid-State Circuits Magazine - Fall 2017 - 124
IEEE Solid-State Circuits Magazine - Fall 2017 - 125
IEEE Solid-State Circuits Magazine - Fall 2017 - 126
IEEE Solid-State Circuits Magazine - Fall 2017 - 127
IEEE Solid-State Circuits Magazine - Fall 2017 - 128
IEEE Solid-State Circuits Magazine - Fall 2017 - 129
IEEE Solid-State Circuits Magazine - Fall 2017 - 130
IEEE Solid-State Circuits Magazine - Fall 2017 - 131
IEEE Solid-State Circuits Magazine - Fall 2017 - 132
IEEE Solid-State Circuits Magazine - Fall 2017 - 133
IEEE Solid-State Circuits Magazine - Fall 2017 - 134
IEEE Solid-State Circuits Magazine - Fall 2017 - 135
IEEE Solid-State Circuits Magazine - Fall 2017 - 136
IEEE Solid-State Circuits Magazine - Fall 2017 - 137
IEEE Solid-State Circuits Magazine - Fall 2017 - 138
IEEE Solid-State Circuits Magazine - Fall 2017 - 139
IEEE Solid-State Circuits Magazine - Fall 2017 - 140
IEEE Solid-State Circuits Magazine - Fall 2017 - 141
IEEE Solid-State Circuits Magazine - Fall 2017 - 142
IEEE Solid-State Circuits Magazine - Fall 2017 - 143
IEEE Solid-State Circuits Magazine - Fall 2017 - 144
IEEE Solid-State Circuits Magazine - Fall 2017 - 145
IEEE Solid-State Circuits Magazine - Fall 2017 - 146
IEEE Solid-State Circuits Magazine - Fall 2017 - 147
IEEE Solid-State Circuits Magazine - Fall 2017 - 148
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover3
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com