IEEE Solid-State Circuits Magazine - Fall 2017 - 62
A straightforward way to benefit from the network's fault tolerance is to perform the computations
at reduced computational accuracy
with limited recognition loss. Typical benchmarks can be run at a 1-9-b
fixed point rather than a 32-b floating
point at lower than 1% accuracy loss
[18]. This is possible by quantizing
all weights of a floating-point-trained
network before execution. Improved
results can be obtained when introducing quantization during the training step itself [19], [38], resulting in
smaller or lower-precision networks
for the same application accuracy. As
an extreme example, networks have
been specifically trained to operate with only 1-b representations of
weights alone [20] as well as with
both weights and activations [20],
[21] wherein all multiplications can
be replaced by efficient XNOR operations [22]. In [20], a binary-weight
version of ImageNet is only 2.9% less
accurate (in top-1 accuracy) than the
full-precision AlexNet [3].
This observation can lead to major
energy savings, as current CPU and
GPU architectures operate using
32-16-b floating-point number formats. Reducing precision from 32-b
floating point to low precision not
only reduces computational energy
but also minimizes the storage and
data-fetching cost needed for network
weights and intermediate results.
Moreover, for very low bit widths,
this even allows the replacement of
multipliers that have several data
values with a common weight factor
via preloaded lookup tables [10]. As
a result, all custom CNN accelerators
operate in fixed point. While most
processors operate at constant 16-,
12-, or 8-b word lengths, some recent
implementations support variable
word-length computations, wherein
the processor can change the used
computational precision from operation to operation [23], [10], [24]. This
accommodates for the observation
that the optimal word length for a
deep network strongly varies from
application to application and is
even shown to differ across various
layers of a single deep network [18]
[Figure 10(a)].
Energy-efficient variable-resolution processors have been realized
using a technique termed dynamic
voltage-accuracy-frequency scaling
[25] to jointly reduce the switching
activity, supply voltage, and parallelization scheme when computational resolution drops [Figure 10(c)].
This results in a scaling of the system's energy consumption, which is
super-linear with the computational
resolution [Figure 10(b)], thus allowing every network layer to run at its
own minimal energy point. Reduced
bit-width implementations all exploit
the deep network's tolerance to faults
in a deterministic way.
Another school of thought targets
energy savings through tolerating
nondeterministic statistical errors.
This can be accomplished by executing the convolutional kernels in the
noisy analog domain [26]. Alternatively, in the digital domain, stochastic fault tolerance can be exploited
by operating the circuits [27] and/
or memory [28] in the energy-efficient near-threshold regions. In this
region, circuit delays as well as
memory failures suffer from large
variation. Yet the networks can tolerate such stochastic behavior up to
a certain limit. Such circuits are combined with circuit monitors that constantly assess and control the circuit's
fault rate [28].
Finally, the operational circumstances can strongly influence the network's tolerance to approximations. In
a given classification application, the
quality of the inputs might change
dynamically, or some classes might be
easier to observe than others. If one
tries to train one common network
that performs acceptably under all
possible circumstances and classes,
a large, complex, energ y-hungr y
network topology would be needed.
Recent work, however, promotes the
training of hierarchical or staged
AlexNet on ImageNet
y3
0
10
8
Relative Power
Quantization (Bits)
10
6
4
Uniform at 100%
2
0
Nonuniform at 99%
2
4
6
Layer Number
(a)
8
33× Gain
at 1% RMSE
16 Bit
10-2
10-4
10-6
6 Bit
y 2 y 1/0 y 0/0
x 0/0
x 1/0
p 0/0
x2
p 1/0
x3
p 2/0
1 Bit
10-4
10-2
Computational Precision
(b)
p 3/0
100
p7
p6
p5
p4
(c)
FIGURE 10: (a) When quantizing all weight and data values in a floating point AlexNet uniformly, the network can run at 9-b precision.
Lower precision can be achieved without significant classification accuracy loss by running every layer at its own optimal precision. This allows
(b) saving power in the function of computational precision and (c) building multipliers whose energy consumption scales drastically with computational precision, through reduced activity factor and critical path length.
62
FA L L 2 0 17
IEEE SOLID-STATE CIRCUITS MAGAZINE
Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Fall 2017
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover1
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover2
IEEE Solid-State Circuits Magazine - Fall 2017 - 1
IEEE Solid-State Circuits Magazine - Fall 2017 - 2
IEEE Solid-State Circuits Magazine - Fall 2017 - 3
IEEE Solid-State Circuits Magazine - Fall 2017 - 4
IEEE Solid-State Circuits Magazine - Fall 2017 - 5
IEEE Solid-State Circuits Magazine - Fall 2017 - 6
IEEE Solid-State Circuits Magazine - Fall 2017 - 7
IEEE Solid-State Circuits Magazine - Fall 2017 - 8
IEEE Solid-State Circuits Magazine - Fall 2017 - 9
IEEE Solid-State Circuits Magazine - Fall 2017 - 10
IEEE Solid-State Circuits Magazine - Fall 2017 - 11
IEEE Solid-State Circuits Magazine - Fall 2017 - 12
IEEE Solid-State Circuits Magazine - Fall 2017 - 13
IEEE Solid-State Circuits Magazine - Fall 2017 - 14
IEEE Solid-State Circuits Magazine - Fall 2017 - 15
IEEE Solid-State Circuits Magazine - Fall 2017 - 16
IEEE Solid-State Circuits Magazine - Fall 2017 - 17
IEEE Solid-State Circuits Magazine - Fall 2017 - 18
IEEE Solid-State Circuits Magazine - Fall 2017 - 19
IEEE Solid-State Circuits Magazine - Fall 2017 - 20
IEEE Solid-State Circuits Magazine - Fall 2017 - 21
IEEE Solid-State Circuits Magazine - Fall 2017 - 22
IEEE Solid-State Circuits Magazine - Fall 2017 - 23
IEEE Solid-State Circuits Magazine - Fall 2017 - 24
IEEE Solid-State Circuits Magazine - Fall 2017 - 25
IEEE Solid-State Circuits Magazine - Fall 2017 - 26
IEEE Solid-State Circuits Magazine - Fall 2017 - 27
IEEE Solid-State Circuits Magazine - Fall 2017 - 28
IEEE Solid-State Circuits Magazine - Fall 2017 - 29
IEEE Solid-State Circuits Magazine - Fall 2017 - 30
IEEE Solid-State Circuits Magazine - Fall 2017 - 31
IEEE Solid-State Circuits Magazine - Fall 2017 - 32
IEEE Solid-State Circuits Magazine - Fall 2017 - 33
IEEE Solid-State Circuits Magazine - Fall 2017 - 34
IEEE Solid-State Circuits Magazine - Fall 2017 - 35
IEEE Solid-State Circuits Magazine - Fall 2017 - 36
IEEE Solid-State Circuits Magazine - Fall 2017 - 37
IEEE Solid-State Circuits Magazine - Fall 2017 - 38
IEEE Solid-State Circuits Magazine - Fall 2017 - 39
IEEE Solid-State Circuits Magazine - Fall 2017 - 40
IEEE Solid-State Circuits Magazine - Fall 2017 - 41
IEEE Solid-State Circuits Magazine - Fall 2017 - 42
IEEE Solid-State Circuits Magazine - Fall 2017 - 43
IEEE Solid-State Circuits Magazine - Fall 2017 - 44
IEEE Solid-State Circuits Magazine - Fall 2017 - 45
IEEE Solid-State Circuits Magazine - Fall 2017 - 46
IEEE Solid-State Circuits Magazine - Fall 2017 - 47
IEEE Solid-State Circuits Magazine - Fall 2017 - 48
IEEE Solid-State Circuits Magazine - Fall 2017 - 49
IEEE Solid-State Circuits Magazine - Fall 2017 - 50
IEEE Solid-State Circuits Magazine - Fall 2017 - 51
IEEE Solid-State Circuits Magazine - Fall 2017 - 52
IEEE Solid-State Circuits Magazine - Fall 2017 - 53
IEEE Solid-State Circuits Magazine - Fall 2017 - 54
IEEE Solid-State Circuits Magazine - Fall 2017 - 55
IEEE Solid-State Circuits Magazine - Fall 2017 - 56
IEEE Solid-State Circuits Magazine - Fall 2017 - 57
IEEE Solid-State Circuits Magazine - Fall 2017 - 58
IEEE Solid-State Circuits Magazine - Fall 2017 - 59
IEEE Solid-State Circuits Magazine - Fall 2017 - 60
IEEE Solid-State Circuits Magazine - Fall 2017 - 61
IEEE Solid-State Circuits Magazine - Fall 2017 - 62
IEEE Solid-State Circuits Magazine - Fall 2017 - 63
IEEE Solid-State Circuits Magazine - Fall 2017 - 64
IEEE Solid-State Circuits Magazine - Fall 2017 - 65
IEEE Solid-State Circuits Magazine - Fall 2017 - 66
IEEE Solid-State Circuits Magazine - Fall 2017 - 67
IEEE Solid-State Circuits Magazine - Fall 2017 - 68
IEEE Solid-State Circuits Magazine - Fall 2017 - 69
IEEE Solid-State Circuits Magazine - Fall 2017 - 70
IEEE Solid-State Circuits Magazine - Fall 2017 - 71
IEEE Solid-State Circuits Magazine - Fall 2017 - 72
IEEE Solid-State Circuits Magazine - Fall 2017 - 73
IEEE Solid-State Circuits Magazine - Fall 2017 - 74
IEEE Solid-State Circuits Magazine - Fall 2017 - 75
IEEE Solid-State Circuits Magazine - Fall 2017 - 76
IEEE Solid-State Circuits Magazine - Fall 2017 - 77
IEEE Solid-State Circuits Magazine - Fall 2017 - 78
IEEE Solid-State Circuits Magazine - Fall 2017 - 79
IEEE Solid-State Circuits Magazine - Fall 2017 - 80
IEEE Solid-State Circuits Magazine - Fall 2017 - 81
IEEE Solid-State Circuits Magazine - Fall 2017 - 82
IEEE Solid-State Circuits Magazine - Fall 2017 - 83
IEEE Solid-State Circuits Magazine - Fall 2017 - 84
IEEE Solid-State Circuits Magazine - Fall 2017 - 85
IEEE Solid-State Circuits Magazine - Fall 2017 - 86
IEEE Solid-State Circuits Magazine - Fall 2017 - 87
IEEE Solid-State Circuits Magazine - Fall 2017 - 88
IEEE Solid-State Circuits Magazine - Fall 2017 - 89
IEEE Solid-State Circuits Magazine - Fall 2017 - 90
IEEE Solid-State Circuits Magazine - Fall 2017 - 91
IEEE Solid-State Circuits Magazine - Fall 2017 - 92
IEEE Solid-State Circuits Magazine - Fall 2017 - 93
IEEE Solid-State Circuits Magazine - Fall 2017 - 94
IEEE Solid-State Circuits Magazine - Fall 2017 - 95
IEEE Solid-State Circuits Magazine - Fall 2017 - 96
IEEE Solid-State Circuits Magazine - Fall 2017 - 97
IEEE Solid-State Circuits Magazine - Fall 2017 - 98
IEEE Solid-State Circuits Magazine - Fall 2017 - 99
IEEE Solid-State Circuits Magazine - Fall 2017 - 100
IEEE Solid-State Circuits Magazine - Fall 2017 - 101
IEEE Solid-State Circuits Magazine - Fall 2017 - 102
IEEE Solid-State Circuits Magazine - Fall 2017 - 103
IEEE Solid-State Circuits Magazine - Fall 2017 - 104
IEEE Solid-State Circuits Magazine - Fall 2017 - 105
IEEE Solid-State Circuits Magazine - Fall 2017 - 106
IEEE Solid-State Circuits Magazine - Fall 2017 - 107
IEEE Solid-State Circuits Magazine - Fall 2017 - 108
IEEE Solid-State Circuits Magazine - Fall 2017 - 109
IEEE Solid-State Circuits Magazine - Fall 2017 - 110
IEEE Solid-State Circuits Magazine - Fall 2017 - 111
IEEE Solid-State Circuits Magazine - Fall 2017 - 112
IEEE Solid-State Circuits Magazine - Fall 2017 - 113
IEEE Solid-State Circuits Magazine - Fall 2017 - 114
IEEE Solid-State Circuits Magazine - Fall 2017 - 115
IEEE Solid-State Circuits Magazine - Fall 2017 - 116
IEEE Solid-State Circuits Magazine - Fall 2017 - 117
IEEE Solid-State Circuits Magazine - Fall 2017 - 118
IEEE Solid-State Circuits Magazine - Fall 2017 - 119
IEEE Solid-State Circuits Magazine - Fall 2017 - 120
IEEE Solid-State Circuits Magazine - Fall 2017 - 121
IEEE Solid-State Circuits Magazine - Fall 2017 - 122
IEEE Solid-State Circuits Magazine - Fall 2017 - 123
IEEE Solid-State Circuits Magazine - Fall 2017 - 124
IEEE Solid-State Circuits Magazine - Fall 2017 - 125
IEEE Solid-State Circuits Magazine - Fall 2017 - 126
IEEE Solid-State Circuits Magazine - Fall 2017 - 127
IEEE Solid-State Circuits Magazine - Fall 2017 - 128
IEEE Solid-State Circuits Magazine - Fall 2017 - 129
IEEE Solid-State Circuits Magazine - Fall 2017 - 130
IEEE Solid-State Circuits Magazine - Fall 2017 - 131
IEEE Solid-State Circuits Magazine - Fall 2017 - 132
IEEE Solid-State Circuits Magazine - Fall 2017 - 133
IEEE Solid-State Circuits Magazine - Fall 2017 - 134
IEEE Solid-State Circuits Magazine - Fall 2017 - 135
IEEE Solid-State Circuits Magazine - Fall 2017 - 136
IEEE Solid-State Circuits Magazine - Fall 2017 - 137
IEEE Solid-State Circuits Magazine - Fall 2017 - 138
IEEE Solid-State Circuits Magazine - Fall 2017 - 139
IEEE Solid-State Circuits Magazine - Fall 2017 - 140
IEEE Solid-State Circuits Magazine - Fall 2017 - 141
IEEE Solid-State Circuits Magazine - Fall 2017 - 142
IEEE Solid-State Circuits Magazine - Fall 2017 - 143
IEEE Solid-State Circuits Magazine - Fall 2017 - 144
IEEE Solid-State Circuits Magazine - Fall 2017 - 145
IEEE Solid-State Circuits Magazine - Fall 2017 - 146
IEEE Solid-State Circuits Magazine - Fall 2017 - 147
IEEE Solid-State Circuits Magazine - Fall 2017 - 148
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover3
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com