IEEE Solid-State Circuits Magazine - Fall 2017 - 95

Figure 6(a) shows another class of IA
topology [6] using resistors for defining
the gain to refine the 3-Op-amp IA. It is
referred to as current-balanced IA (CBIA)
since it works in the current domain.
It comprises a transconductance (TC)
stage with input buffer and R1 and a
transimpedance (TI) stage with output

TABLE 2. A COMPARISON OF CLASSICAL 3-OP-AMP IA AND CAPACITIVE IA.
SPEC

3-OP-AMP IA

CAPACITIVE IA

Gain

(1+2R/RG)

C1/C2

CMRR

1/vR

Noise RTI

V2R

Input impedance

1/j~Cp

1/j~C1

Power

3 × Pop-amp

POTA

dc headroom

VDD/gain

VDD

Input CM range

< VDD

VDD

1/vC

+V2Thermal

+

V2Flicker

Transconductance (TC)
CP

×1

Transimpedance (TI)

IIN

IIN

VIN-
CP

×1

×1
R2

VIN+

b × (V2Thermal + V2Flicker)

VO+

Gain = R2/R1
VO-

×1

IIN

Gain
(AV)

CMRR

Input
Impedance

Noise RTI
(Thermal + 1/f)

R2/R1

1/σBUF

1/CP

2 × VBUF +VR1 +VR2/AV

2

2

Dynamic
Range

2

IIN × R1

(a)
IIN + IDC+
VIN+

×1
IIN

VIN-

IIN

×1
IIN + IDC-
fCHOP

×1

VO+

×1

VO-

R2

To circumvent the dc offset issue,
Figure 5(b) introduces an ac-coupled
capacitive IA (popular for implant
applications where low power consumption is the primary concern [5]). It
is composed of an operational transconductance amplifier (OTA) with capacitive feedback, defining the gain
of IA (C2/C1). The great merit of this
IA is that C1 completely blocks any dc
voltage (electrode polarization voltage) at inputs, achieving maximum
rail-to-rail dc headroom. The feedback
resistor, R, plays a role in biasing the
high impedance input nodes and
determining high-pass corner frequency with C2. A single OTA, which
drives only high-impedance capacitive nodes, means that it can be
designed with extremely low power
consumption. C1 needs to be high
enough to mitigate the noise elevation
by parasitic capacitance Cp, considering the required input impedance.
The CMRR is capacitor mismatch
dependent. Table 2 summarizes and
compares the performance of two
popular IA architectures. While the
3-Op-amp IA has high input impedance, the capacitive IA has advantages
in dc headroom, low power consumption, and rail-to-rail input commonmode range.

buffer and R2. The input differential
voltage is converted into current IIN at
the TC stage, and the output voltage is
generated at the TI stage with the current flow through R2. Therefore, the
differential gain is R2/R1, whereas the
common-mode gain is defined by the
mismatch of the gain at the input buffers,
making CMRR buffer-mismatch dependent rather than resistor-mismatch

R1

Capacitive IA

Current-Balanced
Instrumentation Amplifier

R1

input impedance with a differential gain of (1+2R1/RG) and common
mode gain of one. Meanwhile, the
second-stage amplifier is a differential to single-ended converter with
a differential gain of (R3/R2). Notice
that the common-mode gain is proportional to the resistor mismatch.
The CMRR is then mismatch dependent, and the matching between R2
and R3 is of significant importance.
Increasing the gain of the first stage
not only helps to improve CMRR but
also has an effect to reduce the total
noise of the circuit as the noise of the
second stage is scaled by the first
stage gain when it refers to the input.
It is worth noting that increasing the
first-stage gain is not as easy as the
dc-coupled input contains large dc
offset voltage.

IDC+
fCHOP

IDC-

VDC, Electrode = IDC × R1

dc
Extraction

dc Servo Loop (DSL) Cancels Out
dc Offset Current Flowing Through R1
(b)
FIGURE 6: Current-balanced IA: (a) CBIA topology and (b) CBIA with chopping and dc servo.

IEEE SOLID-STATE CIRCUITS MAGAZINE

FA L L 2 0 17

95



Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Fall 2017

IEEE Solid-State Circuits Magazine - Fall 2017 - Cover1
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover2
IEEE Solid-State Circuits Magazine - Fall 2017 - 1
IEEE Solid-State Circuits Magazine - Fall 2017 - 2
IEEE Solid-State Circuits Magazine - Fall 2017 - 3
IEEE Solid-State Circuits Magazine - Fall 2017 - 4
IEEE Solid-State Circuits Magazine - Fall 2017 - 5
IEEE Solid-State Circuits Magazine - Fall 2017 - 6
IEEE Solid-State Circuits Magazine - Fall 2017 - 7
IEEE Solid-State Circuits Magazine - Fall 2017 - 8
IEEE Solid-State Circuits Magazine - Fall 2017 - 9
IEEE Solid-State Circuits Magazine - Fall 2017 - 10
IEEE Solid-State Circuits Magazine - Fall 2017 - 11
IEEE Solid-State Circuits Magazine - Fall 2017 - 12
IEEE Solid-State Circuits Magazine - Fall 2017 - 13
IEEE Solid-State Circuits Magazine - Fall 2017 - 14
IEEE Solid-State Circuits Magazine - Fall 2017 - 15
IEEE Solid-State Circuits Magazine - Fall 2017 - 16
IEEE Solid-State Circuits Magazine - Fall 2017 - 17
IEEE Solid-State Circuits Magazine - Fall 2017 - 18
IEEE Solid-State Circuits Magazine - Fall 2017 - 19
IEEE Solid-State Circuits Magazine - Fall 2017 - 20
IEEE Solid-State Circuits Magazine - Fall 2017 - 21
IEEE Solid-State Circuits Magazine - Fall 2017 - 22
IEEE Solid-State Circuits Magazine - Fall 2017 - 23
IEEE Solid-State Circuits Magazine - Fall 2017 - 24
IEEE Solid-State Circuits Magazine - Fall 2017 - 25
IEEE Solid-State Circuits Magazine - Fall 2017 - 26
IEEE Solid-State Circuits Magazine - Fall 2017 - 27
IEEE Solid-State Circuits Magazine - Fall 2017 - 28
IEEE Solid-State Circuits Magazine - Fall 2017 - 29
IEEE Solid-State Circuits Magazine - Fall 2017 - 30
IEEE Solid-State Circuits Magazine - Fall 2017 - 31
IEEE Solid-State Circuits Magazine - Fall 2017 - 32
IEEE Solid-State Circuits Magazine - Fall 2017 - 33
IEEE Solid-State Circuits Magazine - Fall 2017 - 34
IEEE Solid-State Circuits Magazine - Fall 2017 - 35
IEEE Solid-State Circuits Magazine - Fall 2017 - 36
IEEE Solid-State Circuits Magazine - Fall 2017 - 37
IEEE Solid-State Circuits Magazine - Fall 2017 - 38
IEEE Solid-State Circuits Magazine - Fall 2017 - 39
IEEE Solid-State Circuits Magazine - Fall 2017 - 40
IEEE Solid-State Circuits Magazine - Fall 2017 - 41
IEEE Solid-State Circuits Magazine - Fall 2017 - 42
IEEE Solid-State Circuits Magazine - Fall 2017 - 43
IEEE Solid-State Circuits Magazine - Fall 2017 - 44
IEEE Solid-State Circuits Magazine - Fall 2017 - 45
IEEE Solid-State Circuits Magazine - Fall 2017 - 46
IEEE Solid-State Circuits Magazine - Fall 2017 - 47
IEEE Solid-State Circuits Magazine - Fall 2017 - 48
IEEE Solid-State Circuits Magazine - Fall 2017 - 49
IEEE Solid-State Circuits Magazine - Fall 2017 - 50
IEEE Solid-State Circuits Magazine - Fall 2017 - 51
IEEE Solid-State Circuits Magazine - Fall 2017 - 52
IEEE Solid-State Circuits Magazine - Fall 2017 - 53
IEEE Solid-State Circuits Magazine - Fall 2017 - 54
IEEE Solid-State Circuits Magazine - Fall 2017 - 55
IEEE Solid-State Circuits Magazine - Fall 2017 - 56
IEEE Solid-State Circuits Magazine - Fall 2017 - 57
IEEE Solid-State Circuits Magazine - Fall 2017 - 58
IEEE Solid-State Circuits Magazine - Fall 2017 - 59
IEEE Solid-State Circuits Magazine - Fall 2017 - 60
IEEE Solid-State Circuits Magazine - Fall 2017 - 61
IEEE Solid-State Circuits Magazine - Fall 2017 - 62
IEEE Solid-State Circuits Magazine - Fall 2017 - 63
IEEE Solid-State Circuits Magazine - Fall 2017 - 64
IEEE Solid-State Circuits Magazine - Fall 2017 - 65
IEEE Solid-State Circuits Magazine - Fall 2017 - 66
IEEE Solid-State Circuits Magazine - Fall 2017 - 67
IEEE Solid-State Circuits Magazine - Fall 2017 - 68
IEEE Solid-State Circuits Magazine - Fall 2017 - 69
IEEE Solid-State Circuits Magazine - Fall 2017 - 70
IEEE Solid-State Circuits Magazine - Fall 2017 - 71
IEEE Solid-State Circuits Magazine - Fall 2017 - 72
IEEE Solid-State Circuits Magazine - Fall 2017 - 73
IEEE Solid-State Circuits Magazine - Fall 2017 - 74
IEEE Solid-State Circuits Magazine - Fall 2017 - 75
IEEE Solid-State Circuits Magazine - Fall 2017 - 76
IEEE Solid-State Circuits Magazine - Fall 2017 - 77
IEEE Solid-State Circuits Magazine - Fall 2017 - 78
IEEE Solid-State Circuits Magazine - Fall 2017 - 79
IEEE Solid-State Circuits Magazine - Fall 2017 - 80
IEEE Solid-State Circuits Magazine - Fall 2017 - 81
IEEE Solid-State Circuits Magazine - Fall 2017 - 82
IEEE Solid-State Circuits Magazine - Fall 2017 - 83
IEEE Solid-State Circuits Magazine - Fall 2017 - 84
IEEE Solid-State Circuits Magazine - Fall 2017 - 85
IEEE Solid-State Circuits Magazine - Fall 2017 - 86
IEEE Solid-State Circuits Magazine - Fall 2017 - 87
IEEE Solid-State Circuits Magazine - Fall 2017 - 88
IEEE Solid-State Circuits Magazine - Fall 2017 - 89
IEEE Solid-State Circuits Magazine - Fall 2017 - 90
IEEE Solid-State Circuits Magazine - Fall 2017 - 91
IEEE Solid-State Circuits Magazine - Fall 2017 - 92
IEEE Solid-State Circuits Magazine - Fall 2017 - 93
IEEE Solid-State Circuits Magazine - Fall 2017 - 94
IEEE Solid-State Circuits Magazine - Fall 2017 - 95
IEEE Solid-State Circuits Magazine - Fall 2017 - 96
IEEE Solid-State Circuits Magazine - Fall 2017 - 97
IEEE Solid-State Circuits Magazine - Fall 2017 - 98
IEEE Solid-State Circuits Magazine - Fall 2017 - 99
IEEE Solid-State Circuits Magazine - Fall 2017 - 100
IEEE Solid-State Circuits Magazine - Fall 2017 - 101
IEEE Solid-State Circuits Magazine - Fall 2017 - 102
IEEE Solid-State Circuits Magazine - Fall 2017 - 103
IEEE Solid-State Circuits Magazine - Fall 2017 - 104
IEEE Solid-State Circuits Magazine - Fall 2017 - 105
IEEE Solid-State Circuits Magazine - Fall 2017 - 106
IEEE Solid-State Circuits Magazine - Fall 2017 - 107
IEEE Solid-State Circuits Magazine - Fall 2017 - 108
IEEE Solid-State Circuits Magazine - Fall 2017 - 109
IEEE Solid-State Circuits Magazine - Fall 2017 - 110
IEEE Solid-State Circuits Magazine - Fall 2017 - 111
IEEE Solid-State Circuits Magazine - Fall 2017 - 112
IEEE Solid-State Circuits Magazine - Fall 2017 - 113
IEEE Solid-State Circuits Magazine - Fall 2017 - 114
IEEE Solid-State Circuits Magazine - Fall 2017 - 115
IEEE Solid-State Circuits Magazine - Fall 2017 - 116
IEEE Solid-State Circuits Magazine - Fall 2017 - 117
IEEE Solid-State Circuits Magazine - Fall 2017 - 118
IEEE Solid-State Circuits Magazine - Fall 2017 - 119
IEEE Solid-State Circuits Magazine - Fall 2017 - 120
IEEE Solid-State Circuits Magazine - Fall 2017 - 121
IEEE Solid-State Circuits Magazine - Fall 2017 - 122
IEEE Solid-State Circuits Magazine - Fall 2017 - 123
IEEE Solid-State Circuits Magazine - Fall 2017 - 124
IEEE Solid-State Circuits Magazine - Fall 2017 - 125
IEEE Solid-State Circuits Magazine - Fall 2017 - 126
IEEE Solid-State Circuits Magazine - Fall 2017 - 127
IEEE Solid-State Circuits Magazine - Fall 2017 - 128
IEEE Solid-State Circuits Magazine - Fall 2017 - 129
IEEE Solid-State Circuits Magazine - Fall 2017 - 130
IEEE Solid-State Circuits Magazine - Fall 2017 - 131
IEEE Solid-State Circuits Magazine - Fall 2017 - 132
IEEE Solid-State Circuits Magazine - Fall 2017 - 133
IEEE Solid-State Circuits Magazine - Fall 2017 - 134
IEEE Solid-State Circuits Magazine - Fall 2017 - 135
IEEE Solid-State Circuits Magazine - Fall 2017 - 136
IEEE Solid-State Circuits Magazine - Fall 2017 - 137
IEEE Solid-State Circuits Magazine - Fall 2017 - 138
IEEE Solid-State Circuits Magazine - Fall 2017 - 139
IEEE Solid-State Circuits Magazine - Fall 2017 - 140
IEEE Solid-State Circuits Magazine - Fall 2017 - 141
IEEE Solid-State Circuits Magazine - Fall 2017 - 142
IEEE Solid-State Circuits Magazine - Fall 2017 - 143
IEEE Solid-State Circuits Magazine - Fall 2017 - 144
IEEE Solid-State Circuits Magazine - Fall 2017 - 145
IEEE Solid-State Circuits Magazine - Fall 2017 - 146
IEEE Solid-State Circuits Magazine - Fall 2017 - 147
IEEE Solid-State Circuits Magazine - Fall 2017 - 148
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover3
IEEE Solid-State Circuits Magazine - Fall 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com