IEEE Solid-State Circuits Magazine - Spring 2014 - 45
itself problematic (a device blowing
up causes simulations to blow up
too!), so, in general, compact device
models account for soft breakdown
effects like impact ionization but
not for hard breakdown. The SOA
for a device is in part defined by
the current metal density limits and
allowable static operating regions
of the I D (VDS, VGS) space but also
depends on the time-dependent
switching behavior. The latter cannot be codified in a compact model.
The breakdown as a function of
layout geometry and the handling
of SOA analysis are therefore also
best handled through the PDK and
dedicated CAD tools in the overall
design flow.
Conclusions
LDMOS transistors are widely used in
high-power and/or voltage applications but exhibit complex behaviors
that are difficult to model; usually
they are the least accurately modeled
devices in BCD technologies. This article reviewed key differences between
the behavior of LDMOS and conventional low-voltage MOS transistors
and has shown how they are modeled
in SP-HV. Some high-voltage transistors do not have out-diffused bodies
like LDMOS devices and may have
symmetric source and drain structure,
but they can exhibit similar electrical
characteristics and therefore are also
more accurately modeled with SP-HV
than with a conventional low-voltage
MOS transistor model.
References
[1] V. Khemka, V. Parthasarthy, R. Zhu, and
A. Bose, "Novel FRESURF LDMOSFET
devices with improved BV dss - R dson, "
IEEE Electron Device Lett., vol. 25, no. 12,
pp. 804-806, Dec. 2004.
[2] W. Burger, H. Brech, D. Burdeaux, C. Dragon, G. Formicone, M. Honan, B. Pryor, and
X. Ren, "RF-LDMOS: A device technology for
high power RF infrastructure applications,"
in Proc. IEEE Compound Semiconductor Integrated Circuit Symp., 2004, pp. 189-192.
[3] D. Moncoqut. D. Farenc, P. Rossel, G. Charitat, H. Tranduc, J. Victory, and I. Pages, "LDMOS transistor for smart power circuits:
Modeling and design," in Proc. IEEE Bipolar/
BiCMOS Circuits Technology Meet. (BCTM),
1996, pp. 216-219.
[4] E. Seebacher, K. Molnar, W. Posch, B.
Senapati, A. Steinmair, and W. Pflanzl,
"High-voltage MOSFET modeling," in
Compact Modeling: Principles, Techniques
and Applications, G. Gildenblat, Ed. New
York: Springer, 2010, pp. 105-136.
[5] H. Shichman and D. A. Hodges, "Modeling
and simulation of insulated-gate fieldeffect transistor switching circuits," IEEE J.
Solid-State Circuits, vol. 3, no. 2, pp. 285-
298, Sept. 1968.
[6] W. Liu, MOSFET Models for SPICE Simulation, Including BSIM3v3 and BSIM4. New
York: Wiley, 2001.
[7] M. A. Maher and C. A. Mead, "A physical
charge-controlled model for MOS transistors," in Advanced Research in VLSI, P. Losleben, Ed., Cambridge, MA: MIT Press, 1987.
[8] C. C. Enz and E. A. Vittoz, Charge-Based
MOS Transistor Modeling: The EKV Model
for Low-Power and RF IC Design. New York:
Wiley, 2006.
[9] G. Gildenblat, W. Wu, X. Li, R. van Langevelde,
A. J. Scholten, G. D. J. Smit, and D. B. M.
Klaassen, "Surface-potential-based compact
model of bulk MOSFET," in Compact Modeling: Principles, Techniques and Applications,
G. Gildenblat, Ed. New York: Springer, 2010,
pp. 3-40.
[10] M. Miura-Mattausch, H. J. Mattausch,
and T. Ezaki, The Physics and Modeling of MOSFETs: Surface-Potential Model
HiSIM, Hackensack, NJ: World Scientific,
2008.
[11] A. Bazigos, F. Krummenacher, J.-M. Sallese, M. Bucher, E. Seebacher, W. Posch,
K. Molnar, and M. Tang, "A physics-based
analytical compact model for the drift
region of the HV-MOSFET," IEEE Trans. Electron Devices, vol. 58, no. 6, pp. 1710-1721,
June 2011.
[12] A. C. T. Aarts and W. J. Kloosterman, "Compact modeling of high-voltage LDMOS
devices including quasi-saturation," IEEE
Trans. Electron Devices, vol. 53, no. 4,
pp. 897-902, Apr. 2006.
[13] Y. Oritsuki, M. Yokomichi, T. Kajiwara,
A. Tanaka, N. Sadachhika, M. Miyake, H.
Kikuchihara, K. Johguchi, U. Feldmann,
H. J. Mattausch, and M. Miura-Mattausch,
"HiSIM-HV: A compact model for simulation of high-voltage MOSFET circuits," IEEE
Trans. Electron Devices, vol. 57, no. 10,
pp. 2671-2678, Oct. 2010.
[14] W. Yao, G. Gildenblat, C. C. McAndrew, and
A. Cassagnes, "SP-HV: A scalable surfacepotential-based compact model for LDMOS
transistors," IEEE Trans. Electron Devices,
vol. 59, no. 3, pp. 542-550, Mar. 2012.
[15] A. Tanaka, Y. Oritsuki, H. Kikuchihara,
M. Miyake, H. J. Mattausch, M. MiuraMattausch, Y. Liu, and K. Green, "Quasi2-dimensional compact resistor model for
the drift region in high-voltage LDMOS
devices," IEEE Trans. Electron Devices,
vol. 58, no. 7, pp. 2072-2080, July 2011.
[16] R. Herberholz, Y. Dupret, S. Chitrashekaraiah, D. Riedner, S. Minehane, D. Vigar, M. Redford, H. Alius, S. Knecht, and
T. Gneiting. (2013, June 13). Modeling of
higher performance HV MOSFET transistors in a 40 nm technology node. MOS-AK
Workshop, Apr. 2011 [Online]. Available:
http://www.mos-ak.org/paris/papers/
P03_Perberholz_MOS-AK_Paris.pdf
[17] W. Yao, G. Gildenblat, C. C. McAndrew,
and A. Cassagnes, "Compact model of
impact ionization in LDMOS transistors,"
IEEE Trans. Electron Devices, vol. 59, no. 7,
pp. 1863-1869, July 2012.
[18] R. V. H. Booth and C. C. McAndrew, "A 3-terminal model for diffused and ion-implanted
resistors," IEEE Trans. Electron Devices,
vol. 44, no. 5, pp. 809-814, May 1997.
[19] C. C. McAndrew, "Integrated resistor modeling," in Compact Modeling: Principles,
Techniques and Applications, G. Gildenblat, Ed. New York: Springer, 2010,
pp. 271-297.
[20] Y. Tsividis and C. McAndrew, Operation
and Modeling of the MOS Transistor, 3rd
ed. New York: Oxford Univ. Press, 2011.
[21] R. Vogelsong and C. Brzezinski, "Simulation of thermal effects in electrical systems," in Proc. IEEE Applied Power Electronics Conf. Expo., Mar. 1989, pp. 353-356.
[22] J. C. J. Paasschens, S. Harmsma, and R.
van der Toorn, "Dependence of thermal
resistance on ambient and actual temperature," in Proc. IEEE Bipolar/BiCMOS Circuits Technology, Sept. 2004, pp. 96-99.
[23] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y.
Chan, and K. W. Terrill, "Hot-electron
induced MOSFET degradation-Model,
monitor, and improvement," IEEE Trans.
Electron Devices, vol. 32, no. 2, pp. 374-
385, Feb. 1985.
[24] X. Gu, H. Wang, T.-L. Chen, and G. Gildenblat, "Substrate current in surface-potential-based compact MOSFET models,"
in Tech. Proc. Nanotech Conf., Feb. 2003,
pp. 310-313.
[25] J. Hui, F.-C. Hsu, and J. Moll, "A new substrate and gate current phenomenon in
short-channel LDD and minimum overlap
devices," IEEE Electron Device Lett., vol. 6,
no. 3, pp. 135-138, Mar. 1985.
[26] C. C. McAndrew, "Statistical modeling
using backward propagation of variance,"
in Compact Modeling: Principles, Techniques and Applications, G. Gildenblat, Ed.
New York: Springer, 2010, pp. 491-520.
[27] D. E. Root, S. Fan, and J. Meyer, "Technology independent large signal non quasistatic FET models by direct construction
from automatically characterized device
data," in Proc. 21st European Microwave
Conf., Sept. 1991, pp. 927-932.
[28] D. E. Root, J. Xu, F. Sischka, M. Marcu, J.
Horn, R. M. Biernacki, and M. Iwamoto,
"Compact and behavioral modeling of
transistors from NVNA measurements:
New flows and future trends," in Proc.
IEEE Custom Integrated Circuits Conf.,
Sept. 2012.
[29] P. H. Aaen, J. A. Pla, and J. Wood, Modeling
and Characterization of RF and Microwave
Power FETs. Cambridge, U.K.: Cambridge
Univ. Press, 2007.
[30] J. Wood, P. H. Aaen, D. Bridges, D. Lamey, M.
Guyonnet, D. S. Chan, and N. Monsauret, "A
nonlinear electro-thermal scalable model
for high-power RF LDMOS transistors," IEEE
Trans. Microw. Theory Technol., vol. 57,
no. 2, pp. 282-292, Feb. 2009.
[31] W. R. Curtice, J. A. Pla, D. Bridges, T. Liang, and E. E. Shumate, "A new dynamic
electro-thermal nonlinear model for silicon RF LDMOS FETs," in IEEE MTT-S Int. Microw. Symp. Dig., June 1999, pp. 419-422.
[32] T. Sakurai and A. R. Newton, "Alpha-power
law MOSFET model and its application to
CMOS inverter delay and other formulas,"
IEEE J. Solid-State Circuits, vol. 25, no. 2,
Apr. 1990.
[33] M. B. Willemsen and R. van Langevelde,
"High-voltage LDMOS compact model for
RF applications," in Proc. IEDM Tech. Dig.,
Dec. 2005, pp. 208-211.
[34] J. Victory, J. Sanchez, T. DeMassa, and B.
Welfert, "Application of the MOS chargesheet model to nonuniform doping along
the channel," Solid-State Electron., vol. 38,
no. 8, pp. 1497-1503, 1995.
[35] J. Victory, C. C. McAndrew, R. Thoma, K.
Joardar, M. Kniffin, S. Merchant, and D.
Moncoqut, "A physically based compact
model for LDMOS transistors," in Proc.
IEEE SOLID-STATE CIRCUITS MAGAZINE
s p r i n g 2 0 14
45
http://www.mos-ak.org/paris/papers/
Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Spring 2014
IEEE Solid-State Circuits Magazine - Spring 2014 - Cover1
IEEE Solid-State Circuits Magazine - Spring 2014 - Cover2
IEEE Solid-State Circuits Magazine - Spring 2014 - 1
IEEE Solid-State Circuits Magazine - Spring 2014 - 2
IEEE Solid-State Circuits Magazine - Spring 2014 - 3
IEEE Solid-State Circuits Magazine - Spring 2014 - 4
IEEE Solid-State Circuits Magazine - Spring 2014 - 5
IEEE Solid-State Circuits Magazine - Spring 2014 - 6
IEEE Solid-State Circuits Magazine - Spring 2014 - 7
IEEE Solid-State Circuits Magazine - Spring 2014 - 8
IEEE Solid-State Circuits Magazine - Spring 2014 - 9
IEEE Solid-State Circuits Magazine - Spring 2014 - 10
IEEE Solid-State Circuits Magazine - Spring 2014 - 11
IEEE Solid-State Circuits Magazine - Spring 2014 - 12
IEEE Solid-State Circuits Magazine - Spring 2014 - 13
IEEE Solid-State Circuits Magazine - Spring 2014 - 14
IEEE Solid-State Circuits Magazine - Spring 2014 - 15
IEEE Solid-State Circuits Magazine - Spring 2014 - 16
IEEE Solid-State Circuits Magazine - Spring 2014 - 17
IEEE Solid-State Circuits Magazine - Spring 2014 - 18
IEEE Solid-State Circuits Magazine - Spring 2014 - 19
IEEE Solid-State Circuits Magazine - Spring 2014 - 20
IEEE Solid-State Circuits Magazine - Spring 2014 - 21
IEEE Solid-State Circuits Magazine - Spring 2014 - 22
IEEE Solid-State Circuits Magazine - Spring 2014 - 23
IEEE Solid-State Circuits Magazine - Spring 2014 - 24
IEEE Solid-State Circuits Magazine - Spring 2014 - 25
IEEE Solid-State Circuits Magazine - Spring 2014 - 26
IEEE Solid-State Circuits Magazine - Spring 2014 - 27
IEEE Solid-State Circuits Magazine - Spring 2014 - 28
IEEE Solid-State Circuits Magazine - Spring 2014 - 29
IEEE Solid-State Circuits Magazine - Spring 2014 - 30
IEEE Solid-State Circuits Magazine - Spring 2014 - 31
IEEE Solid-State Circuits Magazine - Spring 2014 - 32
IEEE Solid-State Circuits Magazine - Spring 2014 - 33
IEEE Solid-State Circuits Magazine - Spring 2014 - 34
IEEE Solid-State Circuits Magazine - Spring 2014 - 35
IEEE Solid-State Circuits Magazine - Spring 2014 - 36
IEEE Solid-State Circuits Magazine - Spring 2014 - 37
IEEE Solid-State Circuits Magazine - Spring 2014 - 38
IEEE Solid-State Circuits Magazine - Spring 2014 - 39
IEEE Solid-State Circuits Magazine - Spring 2014 - 40
IEEE Solid-State Circuits Magazine - Spring 2014 - 41
IEEE Solid-State Circuits Magazine - Spring 2014 - 42
IEEE Solid-State Circuits Magazine - Spring 2014 - 43
IEEE Solid-State Circuits Magazine - Spring 2014 - 44
IEEE Solid-State Circuits Magazine - Spring 2014 - 45
IEEE Solid-State Circuits Magazine - Spring 2014 - 46
IEEE Solid-State Circuits Magazine - Spring 2014 - 47
IEEE Solid-State Circuits Magazine - Spring 2014 - 48
IEEE Solid-State Circuits Magazine - Spring 2014 - 49
IEEE Solid-State Circuits Magazine - Spring 2014 - 50
IEEE Solid-State Circuits Magazine - Spring 2014 - 51
IEEE Solid-State Circuits Magazine - Spring 2014 - 52
IEEE Solid-State Circuits Magazine - Spring 2014 - 53
IEEE Solid-State Circuits Magazine - Spring 2014 - 54
IEEE Solid-State Circuits Magazine - Spring 2014 - 55
IEEE Solid-State Circuits Magazine - Spring 2014 - 56
IEEE Solid-State Circuits Magazine - Spring 2014 - 57
IEEE Solid-State Circuits Magazine - Spring 2014 - 58
IEEE Solid-State Circuits Magazine - Spring 2014 - 59
IEEE Solid-State Circuits Magazine - Spring 2014 - 60
IEEE Solid-State Circuits Magazine - Spring 2014 - 61
IEEE Solid-State Circuits Magazine - Spring 2014 - 62
IEEE Solid-State Circuits Magazine - Spring 2014 - 63
IEEE Solid-State Circuits Magazine - Spring 2014 - 64
IEEE Solid-State Circuits Magazine - Spring 2014 - 65
IEEE Solid-State Circuits Magazine - Spring 2014 - 66
IEEE Solid-State Circuits Magazine - Spring 2014 - 67
IEEE Solid-State Circuits Magazine - Spring 2014 - 68
IEEE Solid-State Circuits Magazine - Spring 2014 - 69
IEEE Solid-State Circuits Magazine - Spring 2014 - 70
IEEE Solid-State Circuits Magazine - Spring 2014 - 71
IEEE Solid-State Circuits Magazine - Spring 2014 - 72
IEEE Solid-State Circuits Magazine - Spring 2014 - 73
IEEE Solid-State Circuits Magazine - Spring 2014 - 74
IEEE Solid-State Circuits Magazine - Spring 2014 - 75
IEEE Solid-State Circuits Magazine - Spring 2014 - 76
IEEE Solid-State Circuits Magazine - Spring 2014 - 77
IEEE Solid-State Circuits Magazine - Spring 2014 - 78
IEEE Solid-State Circuits Magazine - Spring 2014 - 79
IEEE Solid-State Circuits Magazine - Spring 2014 - 80
IEEE Solid-State Circuits Magazine - Spring 2014 - 81
IEEE Solid-State Circuits Magazine - Spring 2014 - 82
IEEE Solid-State Circuits Magazine - Spring 2014 - 83
IEEE Solid-State Circuits Magazine - Spring 2014 - 84
IEEE Solid-State Circuits Magazine - Spring 2014 - 85
IEEE Solid-State Circuits Magazine - Spring 2014 - 86
IEEE Solid-State Circuits Magazine - Spring 2014 - 87
IEEE Solid-State Circuits Magazine - Spring 2014 - 88
IEEE Solid-State Circuits Magazine - Spring 2014 - 89
IEEE Solid-State Circuits Magazine - Spring 2014 - 90
IEEE Solid-State Circuits Magazine - Spring 2014 - 91
IEEE Solid-State Circuits Magazine - Spring 2014 - 92
IEEE Solid-State Circuits Magazine - Spring 2014 - 93
IEEE Solid-State Circuits Magazine - Spring 2014 - 94
IEEE Solid-State Circuits Magazine - Spring 2014 - 95
IEEE Solid-State Circuits Magazine - Spring 2014 - 96
IEEE Solid-State Circuits Magazine - Spring 2014 - 97
IEEE Solid-State Circuits Magazine - Spring 2014 - 98
IEEE Solid-State Circuits Magazine - Spring 2014 - 99
IEEE Solid-State Circuits Magazine - Spring 2014 - 100
IEEE Solid-State Circuits Magazine - Spring 2014 - 101
IEEE Solid-State Circuits Magazine - Spring 2014 - 102
IEEE Solid-State Circuits Magazine - Spring 2014 - 103
IEEE Solid-State Circuits Magazine - Spring 2014 - 104
IEEE Solid-State Circuits Magazine - Spring 2014 - Cover3
IEEE Solid-State Circuits Magazine - Spring 2014 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com