IEEE Solid-State Circuits Magazine - Spring 2015 - 28
Summary
To minimize operating power and
achieve maximum battery lifetime,
the implementation of an ultra-lowpower wireless system requires an
integrated design approach that considers many requirements including battery source, active and sleep
mode energy requirements, system
architectures, and circuit implementations. In practice, these issues lead
to trade-offs, which may require numerous iterations to arrive at an optimal solution for the desired application. With the recent explosion of
interest in ultra-low-power wireless
systems for the Internet of Things
and wearable devices, the current
rate of innovation in the development of ultra-low-power wireless
systems is sure to continue.
References
[1] D. C. Yates, A. S. Holmes, and A. J. Burdett,
"Optimal transmission frequency for
ultralow-power short-range radio links,"
IEEE Trans. Circuits Syst. I, vol. 51, no. 7,
pp. 1405-1413, 2004.
[2] W. Thommen, "An improved low power
crystal oscillator," in Proc. 25th European
Solid-State Circuits Conf. (ESSCIRC'99),
1999, pp. 146-149.
[3] D. Ruffieux, "A high-stability, ultra-lowpower quartz differential oscillator circuit for demanding radio applications,"
in Proc. 28th European Solid-State Circuits
Conf., ESSCIRC 2002, pp. 85-88.
[4] A.-S. Porret, T. Melly, E. A. Vittoz, and C.
C. Enz, "Tradeoffs and design of an ultra
low power UHF transceiver integrated in a
standard digital CMOS process," in Proc.
2000 Int. Symp. Low Power Electronics and
Design (ISLPED'00), 2000, pp. 273-278.
[5] A. C. W. Wong, M. Dawkins, G. Devita, N.
Kasparidis, A. Katsiamis, O. King, F. Lauria, J. Schiff, and A. J. Burdett, "A 1 V 5
mA multimode IEEE 802.15.6/Bluetooth
low-energy WBAN transceiver for biotelemetry applications," IEEE J. Solid-State
Circuits, vol. 8, no. 1, pp. 186-198, 2013.
[6] Y.-H. Liu, X. Huang, M. Vidojkovic, A. Ba,
P. Harpe, G. Dolmans, and H. de Groot, "A
1.9nJ/b 2.4GHz multistandard (Bluetooth
Low Energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks," in
IEEE Int. Solid-State Circuits Conf. Dig. Technical Papers (ISSCC), 2013, pp. 446-447
[7] E. Le Roux, N. Scolari, B. Banerjee, C. Arm,
P. Volet, D. Sigg, P. Heim, J.-F. Perotto, F.
Kaess, N. Raemy, A. Vouilloz, D. Ruffieux,
M. Contaldo, F. Giroud, D. Severac, M.
Morgan, S. Gyger, C. Monneron, T.-C. Le,
C. Henzelin, and V. Peiris, "A 1V RF SoC
with an 863-to-928MHz 400kb/s radio
and a 32b Dual-MAC DSP core for wireless
sensor and body networks," in IEEE Int.
28
s p r I n g 2 0 15
Solid-State Circuits Conf. Dig. Technical
Papers (ISSCC), 2010, pp. 464-465.
[8] G. Devita, A. C. W. Wong, M. Dawkins, K.
Glaros, U. Kiani, F. Lauria, V. Madaka, O.
Omeni, J. Schiff, A. Vasudevan, L. Whitaker, S. Yu, and A. Burdett, "A 5mW multistandard Bluetooth LE/IEEE 802.15.6 SoC
for WBAN applications," in Proc. 40th
European Solid State Circuits Conf. (ESSCIRC), 2014, pp. 283-286.
[9] F. Pengg, D. Barras, N. Scolari, and A. Vouilloz, "A low power miniaturized 1.95 mm2
fully integrated transceiver with fastPLL
mode for IEEE 802.15.4/Bluetooth smart
and proprietary 2.4GHz applications," in
Proc. IEEE RFIC Symp., 2013, pp. 71-74.
[10] B. Otis, Y. H. Chee, and J. Rabaey, "A 400
μW-RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks," in
IEEE Int. Solid-State Circuits Conf. Dig. Technical Papers (ISSCC), 2005, pp. 396-606.
[11] M. Vidojkovic, S. Rampu, K. Imamura, P.
Harpe, G. Dolmans, and H. de Groot, "A
500uW 5Mbps ULP super-regenerative RF
front-end," in Proc. ESSCIRC, 2010, pp.
462-465.
[12] F. X. Moncunill-Geniz, P. Pala-Schonwalder, C. Dehollaini, N. Joehl, and M.
Declercq, "An 11-Mb/s 2.1-mW synchronous superregenerative receiver at 2.4
GHz," IEEE Trans. Microwave Theory Tech.,
vol. 55, no. 6, pp. 1355-1362.
[13] C. Ma, C. Hu, J. Cheng, L. Xia, and P.Y.
Chiang, "A near-threshold, 0.16 nJ/b OOKtransmitter with 0.18 nJ/b noise-cancelling super-regenerative receiver for the
medical implant communications service," IEEE Trans. Biomed. Circuits Syst.,
vol. 7, no. 6, pp. 841-850, 2013.
[14] K. Kim, S. Yun, S. Lee, and S. Nam, "Lowpower CMOS super-regenerative receiver
with a digitally self-quenching loop," IEEE
Microwave Wireless Components Lett., vol.
22, no. 9, pp. 486-488, 2012.
[15] H.-G. Park, J. Lee, J.-a Jang, J.-H. Jang, D.-S.
Lee, H. Kim, S. J. Kim, S.-G. Lee, and K.-Y.
Lee, "An ultra-low-power super regeneration oscillator-based transceiver with 177
mW leakage-compensated PLL and automatic quench waveform generator," IEEE
Trans. Microwave Theory Tech., vol. 61,
no. 9, pp. 3381-3390, 2013.
[16] M. Rahman, M. Elbadry, and R. Harjani, "A
2.5 nJ/bit multiband (MBAN & ISM) transmitter for IEEE 802.15.6 based on a hybrid
polyphase-MUX/ILO based modulator," in
Proc. IEEE Radio Frequency Integrated Circuits Symp., 2014, pp. 17-20.
[17] Y.-H. Liu, C.-L. Li, and T.-H. Lin, "A 200pJ/b MUX-based RF transmitter for
implantable multichannel neural recording," IEEE Trans. Microwave Theory Tech.,
vol. 57, no. 10, pt. 2, pp. 2533-2541, 2009.
[18] S. Diao, Y. Zheng, Y. Gao, S.-J. Cheng, X.
Yuan, M. Je, and C.-H. Heng, "A 50-Mb/s
CMOS QPSK/O-QPSK transmitter employing injection locking for direct modulation," IEEE Trans. Microwave Theory Tech.,
vol. 60, no. 1, pp. 120-130, 2012.
[19] S.-J. Cheng, Y. Gao, W.-D. Toh, Y. Zheng, M.
Je, and C.-H. Heng, "A 110pJ/b multichannel FSK/GMSK/QPSK/p/4-DQPSK transmitter with phase-interpolated dual-injection
DLL-based synthesizer employing hybrid
FIR," in IEEE Int. Solid-State Circuits Conf.
Dig. Technical Papers (ISSCC), 2013, pp.
450-451.
IEEE SOLID-STATE CIRCUITS MAGAZINE
[20] Z. Lin, P.-I. Mak, and R. P. Martins, "A
2.4 GHz ZigBee receiver exploiting an RFto-BB-current-reuse Blixer + hybrid filter
topology in 65 nm CMOS," IEEE J. SolidState Circuits, vol. 49, no. 6, pp. 1333-
1344, 2013.
[21] T. Song, H.-S. Oh, E. Yoon, and S. Hong,
"A low-power 2.4-GHz current-reused
receiver front-end and frequency source
for wireless sensor network," IEEE J. SolidState Circuits, vol. 42, no. 5, pp. 1012-
1022, 2007.
[22] J. Shi, J. Pandey, and B. P. Otis, "A
1.5 GHz high-Q receiver based on current reuse," in Proc. 2011 IEEE Int. Symp.
Circuits and Systems (ISCAS), 2011,
pp. 1800-1803.
[23] W. Ying, P. Qin, J. Jin, and T. Mo, "A
1 mW 5 GHz current reuse CMOS VCO
with low phase noise and balanced
differential outputs," in Proc. 13th Int.
Symp. Integrated Circuits (ISIC), 2011,
pp. 543-546.
[24] T. Siriburanon, W. Deng, K. Okada, and
A. Matsuzawa, "A current-reuse Class-C
LC-VCO with an adaptive bias scheme,"
in Proc. IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2013, pp.
35-38.
About the Author
Alison Burdett (Alison.Burdett@
toumaz.com) has over 25 years of
experience in semiconductor design,
particularly in the field of ultra-lowpower wireless communication. She
joined Toumaz in 2001 as technical
director, and is currently chief technology officer, responsible for delivering silicon and healthcare technology programmes within the company.
Prior to joining Toumaz, Alison spent
time both in industry as an integrated
circuit designer, and also in academia
(as senior lecturer in analogue IC design at Imperial College London). Dr.
Burdett is a Chartered Engineer, a fellow of the Institute of Engineering
and Technology, and a Senior Member of the IEEE. She was European Regional Chair (2013-2015) of the Technical Programme Committee for the
IEEE International Solid-State Circuits
Conference (ISSCC). She is a member
of the U.K. National Microelectronics
Institute Microelectronics Design Advisory Board and a visiting researcher at the Institute of Biomedical Engineering, Imperial College.
Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Spring 2015
IEEE Solid-State Circuits Magazine - Spring 2015 - Cover1
IEEE Solid-State Circuits Magazine - Spring 2015 - Cover2
IEEE Solid-State Circuits Magazine - Spring 2015 - 1
IEEE Solid-State Circuits Magazine - Spring 2015 - 2
IEEE Solid-State Circuits Magazine - Spring 2015 - 3
IEEE Solid-State Circuits Magazine - Spring 2015 - 4
IEEE Solid-State Circuits Magazine - Spring 2015 - 5
IEEE Solid-State Circuits Magazine - Spring 2015 - 6
IEEE Solid-State Circuits Magazine - Spring 2015 - 7
IEEE Solid-State Circuits Magazine - Spring 2015 - 8
IEEE Solid-State Circuits Magazine - Spring 2015 - 9
IEEE Solid-State Circuits Magazine - Spring 2015 - 10
IEEE Solid-State Circuits Magazine - Spring 2015 - 11
IEEE Solid-State Circuits Magazine - Spring 2015 - 12
IEEE Solid-State Circuits Magazine - Spring 2015 - 13
IEEE Solid-State Circuits Magazine - Spring 2015 - 14
IEEE Solid-State Circuits Magazine - Spring 2015 - 15
IEEE Solid-State Circuits Magazine - Spring 2015 - 16
IEEE Solid-State Circuits Magazine - Spring 2015 - 17
IEEE Solid-State Circuits Magazine - Spring 2015 - 18
IEEE Solid-State Circuits Magazine - Spring 2015 - 19
IEEE Solid-State Circuits Magazine - Spring 2015 - 20
IEEE Solid-State Circuits Magazine - Spring 2015 - 21
IEEE Solid-State Circuits Magazine - Spring 2015 - 22
IEEE Solid-State Circuits Magazine - Spring 2015 - 23
IEEE Solid-State Circuits Magazine - Spring 2015 - 24
IEEE Solid-State Circuits Magazine - Spring 2015 - 25
IEEE Solid-State Circuits Magazine - Spring 2015 - 26
IEEE Solid-State Circuits Magazine - Spring 2015 - 27
IEEE Solid-State Circuits Magazine - Spring 2015 - 28
IEEE Solid-State Circuits Magazine - Spring 2015 - 29
IEEE Solid-State Circuits Magazine - Spring 2015 - 30
IEEE Solid-State Circuits Magazine - Spring 2015 - 31
IEEE Solid-State Circuits Magazine - Spring 2015 - 32
IEEE Solid-State Circuits Magazine - Spring 2015 - 33
IEEE Solid-State Circuits Magazine - Spring 2015 - 34
IEEE Solid-State Circuits Magazine - Spring 2015 - 35
IEEE Solid-State Circuits Magazine - Spring 2015 - 36
IEEE Solid-State Circuits Magazine - Spring 2015 - 37
IEEE Solid-State Circuits Magazine - Spring 2015 - 38
IEEE Solid-State Circuits Magazine - Spring 2015 - 39
IEEE Solid-State Circuits Magazine - Spring 2015 - 40
IEEE Solid-State Circuits Magazine - Spring 2015 - 41
IEEE Solid-State Circuits Magazine - Spring 2015 - 42
IEEE Solid-State Circuits Magazine - Spring 2015 - 43
IEEE Solid-State Circuits Magazine - Spring 2015 - 44
IEEE Solid-State Circuits Magazine - Spring 2015 - 45
IEEE Solid-State Circuits Magazine - Spring 2015 - 46
IEEE Solid-State Circuits Magazine - Spring 2015 - 47
IEEE Solid-State Circuits Magazine - Spring 2015 - 48
IEEE Solid-State Circuits Magazine - Spring 2015 - 49
IEEE Solid-State Circuits Magazine - Spring 2015 - 50
IEEE Solid-State Circuits Magazine - Spring 2015 - 51
IEEE Solid-State Circuits Magazine - Spring 2015 - 52
IEEE Solid-State Circuits Magazine - Spring 2015 - 53
IEEE Solid-State Circuits Magazine - Spring 2015 - 54
IEEE Solid-State Circuits Magazine - Spring 2015 - 55
IEEE Solid-State Circuits Magazine - Spring 2015 - 56
IEEE Solid-State Circuits Magazine - Spring 2015 - 57
IEEE Solid-State Circuits Magazine - Spring 2015 - 58
IEEE Solid-State Circuits Magazine - Spring 2015 - 59
IEEE Solid-State Circuits Magazine - Spring 2015 - 60
IEEE Solid-State Circuits Magazine - Spring 2015 - 61
IEEE Solid-State Circuits Magazine - Spring 2015 - 62
IEEE Solid-State Circuits Magazine - Spring 2015 - 63
IEEE Solid-State Circuits Magazine - Spring 2015 - 64
IEEE Solid-State Circuits Magazine - Spring 2015 - 65
IEEE Solid-State Circuits Magazine - Spring 2015 - 66
IEEE Solid-State Circuits Magazine - Spring 2015 - 67
IEEE Solid-State Circuits Magazine - Spring 2015 - 68
IEEE Solid-State Circuits Magazine - Spring 2015 - 69
IEEE Solid-State Circuits Magazine - Spring 2015 - 70
IEEE Solid-State Circuits Magazine - Spring 2015 - 71
IEEE Solid-State Circuits Magazine - Spring 2015 - 72
IEEE Solid-State Circuits Magazine - Spring 2015 - 73
IEEE Solid-State Circuits Magazine - Spring 2015 - 74
IEEE Solid-State Circuits Magazine - Spring 2015 - 75
IEEE Solid-State Circuits Magazine - Spring 2015 - 76
IEEE Solid-State Circuits Magazine - Spring 2015 - 77
IEEE Solid-State Circuits Magazine - Spring 2015 - 78
IEEE Solid-State Circuits Magazine - Spring 2015 - 79
IEEE Solid-State Circuits Magazine - Spring 2015 - 80
IEEE Solid-State Circuits Magazine - Spring 2015 - 81
IEEE Solid-State Circuits Magazine - Spring 2015 - 82
IEEE Solid-State Circuits Magazine - Spring 2015 - 83
IEEE Solid-State Circuits Magazine - Spring 2015 - 84
IEEE Solid-State Circuits Magazine - Spring 2015 - 85
IEEE Solid-State Circuits Magazine - Spring 2015 - 86
IEEE Solid-State Circuits Magazine - Spring 2015 - Cover3
IEEE Solid-State Circuits Magazine - Spring 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com