IEEE Solid-State Circuits Magazine - Spring 2016 - 55
[24] J. Zahurak, K. Miyata, M. Fischer, M. Balakrishnan, S. Chhajed, D. Wells, H. Li,
A. Torsi, J. Lim, and M. Korber, "Process
integration of a 27nm, 16Gb Cu ReRAM,"
in Proc. IEEE Int. Electron Devices Meeting, San Francisco, CA, 2014, pp. 6.2.1-
6.2.4.
[25] M. F. Chang, A. Lee, P. C. Chen, C. J. Lin,
Y. C. King, S. S. Sheu, and T. K. Ku, "Challenges and circuit techniques for energyefficient on-chip nonvolatile memory using memristive devices," IEEE J. Emerging
Selected Topics Circuits Syst., vol. 5, no. 2,
pp. 183-193, 2015.
[26] J. Liang, and H. S. P. Wong, "Cross-point
memory array without cell selectors-Device characteristics and data storage pattern dependencies," IEEE Trans. Electron
Devices, vol. 57, no. 10, pp. 2531-2538,
2010.
[27] Y. Deng, P. Huang, B. Chen, X. Yang, B. Gao,
J. Wang, L. Zeng, G. Du, J. Kang, and X. Liu,
"ReRAM crossbar array with cell selection
device: A device and circuit interaction
study," IEEE Trans. Electron Devices, vol.
60, no. 2, pp. 719-726, 2013.
[28] D. Niu, C. Xu, N. Muralimanohar, N. P.
Jouppi, and Y. Xie, "Design trade-offs for
high density cross-point resistive memory," in Proc. ACM/IEEE Int. Symp. Low
Power Electronics and Design, 2012, pp.
209-214.
[29] G. W. Burr, R. S. Shenoy, K. Virwani, P.
Narayanan, A. Padilla, B. Kurdi, and H.
Hwang, "Access devices for 3D crosspoint
memory," J. Vac. Sci. Technol. B, Micorelectron. Process. Phenom., vol. 32, no. 4, pp.
40802, 2014.
[30] J.-J. Huang, Y.-M. Tseng, W.-C. Luo, C.-W.
Hsu, and T.-H. Hou, "One selector-one
resistor (1S1R) crossbar array for highdensity flexible memory applications," in
Proc. IEEE Int. Electron Devices Meeting,
2011, pp. 733-736.
[31] K. Gopalakrishnan, R. S. Shenoy, C. T.
Rettner, K. Virwani, D. S. Bethune, R.
M. Shelby, G. W. Burr, A. Kellock, R. S.
King, K. Nguyen, A. N. Bowers, M. Jurich,
B. Jackson, A. M. Friz, T. Topuria, P. M.
Rice, and B. N. Kurdi, "Highly-scalable
novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays," in Proc. IEEE Symp.
VLSI Technology, Honolulu, HI, 2010, pp.
205-206.
[32] G. W. Burr, K. Virwani, R. S. Shenoy, G.
Fraczak, C. T. Rettner, A. Padilla, R. S.
King, K. Nguyen, A. N. Bowers, M. Jurich,
M. BrightSky, E. A. Joseph, A. J. Kellock,
N. Arellano, B. N. Kurdi, and K. Gopalakrishnan, "Recovery dynamics and fast
(sub-50ns) read operation with access
devices for 3D crosspoint memory based
on
mixed-ionic-electronic-conduction
(MIEC)," in Proc. IEEE Symp.VLSI Technology, Kyoto, Japan, 2013, pp. T66-T67.
[33] K. Virwani, G. W. Burr, R. S. Shenoy, C. T.
Rettner, A. Padilla, T. Topuria, P. M. Rice,
G. Ho, R. S. King, K. Nguyen, A. N. Bowers,
M. Jurich, M. BrightSky, E. A. Joseph, A. J.
Kellock, N. Arellano, B. N. Kurdi, and K.
Gopalakrishnan, "Sub-30nm scaling and
high-speed operation of fully-confined
access-devices for 3D crosspoint memory
based on mixed-ionic-electronic-conduction (MIEC) materials," in Proc. IEEE Int.
Electron Devices Meeting, San Francisco,
CA, 2012, pp. 2.7.1-2.7.4.
[34] S.G. Kim, T.J. Ha, S. Kim, J.Y. Lee, K.W.
Kim, J.H. Shin, Y.T. Park, S.P. Song, B.Y.
Kim, W.G. Kim, J.C. Lee, H.S. Lee, J.H.
Song, E.R. Hwang, S.H. Cho, J.C. Ku, J.I.
Kim, K.S. Kim, J. H. Yoo, H.J. Kim, H.G.
Jung, K.J. Lee, S. Chung, J.H. Kang, J. H.
Lee, H. S. Kim, S. J. Hong, G. Gibson, and Y.
Jeon, "Improvement of characteristics of
NbO2 selector and full integration of 4F2
2x-nm tech 1S1R ReRAM," in Proc. IEEE Int.
Electron Devices Meeting, Washington,
DC, 2015, pp. 10.3.1-10.3.4.
[35] D. Kau, S. Tang, I. V. Karpov, R. Dodge, B.
Klehn, J. Kalb, J. Strand, A. Diaz, N. Leung,
J. Wu, and S. Lee, "A stackable cross point
phase change memory," in Proc. IEEE Int.
Electron Devices Meeting, Baltimore, MD,
2009, pp. 1-4.
[36] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu,
and H. Nazarian, "3D-stackable crossbar
resistive memory based on field assisted
superlinear threshold (FAST) selector,"
in Proc. IEEE Int. Electron Devices Meeting, San Francisco, CA, 2014, pp. 6.7.1-
6.7.4.
[37] M. F. Chang, S. J. Shen, C. C. Liu, C. W. Wu,
Y. F. Lin, Y. C. King, C. J. Lin, H. J. Liao,
Y. D. Chih, and H. Yamauchi, "An offsettolerant fast-random-read current-sampling-based sense amplifier for smallcell-current nonvolatile memory," IEEE
J. Solid-State Circuits, vol. 48, no. 3, pp.
864-877, 2013.
[38] P. Y. Chen, and S. Yu, "Compact modeling
of RRAM devices and its applications in
1T1R and 1S1R array design," IEEE Trans.
Electron Devices, vol. 62, no. 12, pp. 4022-
4028, 2015.
[39] A. Kawahara, R. Azuma, Y. Ikeda, K.
Kawai, Y. Katoh, K. Tanabe, T. Nakamura, Y. Sumimoto, N. Yamada, N. Nakai, S.
Sakamoto, Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Origasa, K. Shimakawa,
T. Takagi, T. Mikawa, and K. Aono, "An
8Mb multi-layered cross-point ReRAM
macro with 443MB/s write throughput,"
in Proc. IEEE Int. Solid-State Circuits Conf.,
2012pp. 178-185.
[40] Arizona State University. (2015, Apr. 3).
ASU Memory Chip Trend. [Online]. Available: http://faculty.engineering.asu.edu/
shimengyu/model-downloads/.
[41] K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T.
Shimizu, Y. Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai,
M. Amano, N. Shimomura, H. Yoda, and Y.
Watanabe, "A 64Mb MRAM with clampedreference
and
adequate-reference
schemes," in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, 2010, pp.
258-259.
[42] H. Noguchi, K. Ikegami, K. Kushida, K.
Abe, S. Itai, S. Takaya, N. Shimomura, J.
Ito, A. Kawasumi, H. Hara, and S. Fujita,
"A 3.3ns-access-time 71.2μW/MHz 1Mb
embedded STT-MRAM using physically
eliminated read-disturb scheme and normally-off memory architecture," in Proc.
IEEE Int. Solid-State Circuits Conf., San
Francisco, CA, 2015, pp. 1-3.
[43] H.-C. Yu, K.-C. Lin, K.-F. Lin, C.-Y. Huang,
Y.-D. Chih, T.-C. Ong, J. Chang, S. Natarajan, and L. Tran, "Cycling endurance optimization scheme for 1Mb STT-MRAM in
40nm technology," in Proc. IEEE Int. SolidState Circuits Conf., San Francisco, CA,
2013, pp. 224-225.
[44] L. Yu, T. Zhong, W. Hsu, S. Kim, X. Lu, J. J.
Kan, C. Park, W. C. Chen, X. Li, X. Zhu, P.
Wang, M. Gottwald, J. Fatehi, L. Seward,
J. P. Kim, N. Yu, G. Jan, J. Haq, S. Le, Y.
J. Wang, L. Thomas, J. Zhu, H. Liu, Y. J.
Lee, R. Y. Tong, K. Pi, D. Shen, R. He, Z.
Teng, V. Lam, R. Annapragada, T. Torng, P.
K. Wang, and S. H. Kang, "Fully functional
perpendicular STT-MRAM macro embedded in 40 nm logic for energy-efficient
IOT applications," in Proc. IEEE Int. Electron Devices Meeting, Washington, DC,
2015, pp. 26.1.1-26.1.4.
[45] C. Villa, D. Mills, G. Barkley, H. Giduturi,
S. Schippers, and D. Vimercati, "A 45nm
1Gb 1.8V phase-change memory," in Proc.
IEEE Int. Solid-State Circuits Conf., San
Francisco, CA, 2010, pp. 270-271.
[46] Y. Choi, I. Song, M.-H. Park, H. Chung, S.
Chang, B. Cho, J. Kim, Y. Oh, D. Kwon, J.
Sunwoo, J. Shin, Y. Rho, C. Lee, M. Kang,
J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q.
Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K.
Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, and
G. Jeong, "A 20nm 1.8V 8Gb PRAM with
40MB/s program bandwidth," in Proc. IEEE
Int. Solid-State Circuits Conf., San Francisco, CA, 2012, pp. 46-48.
[47] S. S. Sheu, M. F. Chang, K. F. Lin, C. W. Wu,
Y. S. Chen, P. F. Chiu, C. C. Kuo, Y. S. Yang,
P. C. Chiang, W. P. Lin, C. H. Lin, H. Y. Lee,
P. Y. Gu, S. M. Wang, F. T. Chen, K. L. Su,
C. H. Lien, K. H. Cheng, H. T. Wu, T. K. Ku,
M. J. Kao, and M. J. Tsai, "A 4Mb embedded SLC resistive-RAM macro with 7.2ns
read-write random-access time and 160ns
MLC-access capability," in Proc. IEEE Int.
Solid-State Circuits Conf., San Francisco,
CA, 2011, pp. 200-202.
[48] M. F. Chang, C. W. Wu, C. C. Kuo, S. J. Shen,
K. F. Lin, S. M. Yang, Y. C. King, C. J. Lin,
and Y. D. Chih, "A 0.5V 4Mb logic-process
compatible embedded resistive RAM (ReRAM) in 65 nm CMOS using low-voltage
current-mode sensing scheme with 45ns
random read time," in Proc. IEEE Int. SolidState Circuits Conf., San Francisco, CA,
2012, pp. 434-436.
[49] M. F. Chang, J. J. Wu, T. F. Chien, Y. C. Liu,
T. C. Yang, W. C. Shen, Y. C. King, C. J. Lin,
K. F. Lin, Y. D. Chih, S. Natarajan, and J.
Chang, "Embedded 1Mb ReRAM in 28 nm
CMOS with 0.27-to-1V read using swingsample-and-couple sense amplifier and
self-boost-write-termination scheme," in
Proc. IEEE Int. Solid-State Circuits Conf.,
San Francisco, CA, 2014, pp. 332-333.
[50] T., Y. Liu, T. H. Yan, R. Scheuerlein, Y.
Chen, J. K. Lee, G. Balakrishnan, G. Yee,
H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S.
Addepalli, A. Al-Shamma, C. Y. Chen, M.
Gupta, G. Hilton, S. Joshi, A. Kathuria,
V. Lai, D. Masiwal, an M. Matsumoto, "A
130.7 mm 2 2-layer 32Gb ReRAM memory
device in 24nm technology," in Proc. IEEE
Int. Solid-State Circuits Conf., San Francisco, CA, 2013, pp. 210-211.
[51] Intel and Micron Produce Breakthrough Memory Technology. (2015).
[Online]. Available: http://newsroom.
intel.com/community/intel_newsroom/
blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
[52] R. Fackenthal, M. Kitagawa, W. Otsuka, K.
Prall, D. Mills, K. Tsutsui, J. Javanifard, K.
Tedrow, T. Tsushima, Y. Shibahara, and
G. Hush, "A 16Gb ReRAM with 200MB/s
write and 1GB/s read in 27nm technology," in Proc. IEEE Int. Solid-State Circuits
Conf., San Francisco, CA, 2014, pp.
338-339.
[53] M. K. Qureshi, M. Franchescini, V. Srinivasan, L. Lastras, B. Abali, and J. Karidis,
"Enhancing lifetime and security of PCMbased main memory with start-gap wear
leveling," in Proc. IEEE/ACM Int. Symp. Microarchitecture, 2009, pp. 14-23.
[54] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M.
Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H.
Aochi, and A. Nitayama, "Bit cost scalable
technology with punch and plug process
for ultra high density flash memory," in
IEEE SOLID-STATE CIRCUITS MAGAZINE
S P R I N G 2 0 16
55
http://faculty.engineering.asu.edu/
http://newsroom
http://www.intel.com/community/intel_newsroom/
Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Spring 2016
IEEE Solid-State Circuits Magazine - Spring 2016 - Cover1
IEEE Solid-State Circuits Magazine - Spring 2016 - Cover2
IEEE Solid-State Circuits Magazine - Spring 2016 - 1
IEEE Solid-State Circuits Magazine - Spring 2016 - 2
IEEE Solid-State Circuits Magazine - Spring 2016 - 3
IEEE Solid-State Circuits Magazine - Spring 2016 - 4
IEEE Solid-State Circuits Magazine - Spring 2016 - 5
IEEE Solid-State Circuits Magazine - Spring 2016 - 6
IEEE Solid-State Circuits Magazine - Spring 2016 - 7
IEEE Solid-State Circuits Magazine - Spring 2016 - 8
IEEE Solid-State Circuits Magazine - Spring 2016 - 9
IEEE Solid-State Circuits Magazine - Spring 2016 - 10
IEEE Solid-State Circuits Magazine - Spring 2016 - 11
IEEE Solid-State Circuits Magazine - Spring 2016 - 12
IEEE Solid-State Circuits Magazine - Spring 2016 - 13
IEEE Solid-State Circuits Magazine - Spring 2016 - 14
IEEE Solid-State Circuits Magazine - Spring 2016 - 15
IEEE Solid-State Circuits Magazine - Spring 2016 - 16
IEEE Solid-State Circuits Magazine - Spring 2016 - 17
IEEE Solid-State Circuits Magazine - Spring 2016 - 18
IEEE Solid-State Circuits Magazine - Spring 2016 - 19
IEEE Solid-State Circuits Magazine - Spring 2016 - 20
IEEE Solid-State Circuits Magazine - Spring 2016 - 21
IEEE Solid-State Circuits Magazine - Spring 2016 - 22
IEEE Solid-State Circuits Magazine - Spring 2016 - 23
IEEE Solid-State Circuits Magazine - Spring 2016 - 24
IEEE Solid-State Circuits Magazine - Spring 2016 - 25
IEEE Solid-State Circuits Magazine - Spring 2016 - 26
IEEE Solid-State Circuits Magazine - Spring 2016 - 27
IEEE Solid-State Circuits Magazine - Spring 2016 - 28
IEEE Solid-State Circuits Magazine - Spring 2016 - 29
IEEE Solid-State Circuits Magazine - Spring 2016 - 30
IEEE Solid-State Circuits Magazine - Spring 2016 - 31
IEEE Solid-State Circuits Magazine - Spring 2016 - 32
IEEE Solid-State Circuits Magazine - Spring 2016 - 33
IEEE Solid-State Circuits Magazine - Spring 2016 - 34
IEEE Solid-State Circuits Magazine - Spring 2016 - 35
IEEE Solid-State Circuits Magazine - Spring 2016 - 36
IEEE Solid-State Circuits Magazine - Spring 2016 - 37
IEEE Solid-State Circuits Magazine - Spring 2016 - 38
IEEE Solid-State Circuits Magazine - Spring 2016 - 39
IEEE Solid-State Circuits Magazine - Spring 2016 - 40
IEEE Solid-State Circuits Magazine - Spring 2016 - 41
IEEE Solid-State Circuits Magazine - Spring 2016 - 42
IEEE Solid-State Circuits Magazine - Spring 2016 - 43
IEEE Solid-State Circuits Magazine - Spring 2016 - 44
IEEE Solid-State Circuits Magazine - Spring 2016 - 45
IEEE Solid-State Circuits Magazine - Spring 2016 - 46
IEEE Solid-State Circuits Magazine - Spring 2016 - 47
IEEE Solid-State Circuits Magazine - Spring 2016 - 48
IEEE Solid-State Circuits Magazine - Spring 2016 - 49
IEEE Solid-State Circuits Magazine - Spring 2016 - 50
IEEE Solid-State Circuits Magazine - Spring 2016 - 51
IEEE Solid-State Circuits Magazine - Spring 2016 - 52
IEEE Solid-State Circuits Magazine - Spring 2016 - 53
IEEE Solid-State Circuits Magazine - Spring 2016 - 54
IEEE Solid-State Circuits Magazine - Spring 2016 - 55
IEEE Solid-State Circuits Magazine - Spring 2016 - 56
IEEE Solid-State Circuits Magazine - Spring 2016 - 57
IEEE Solid-State Circuits Magazine - Spring 2016 - 58
IEEE Solid-State Circuits Magazine - Spring 2016 - 59
IEEE Solid-State Circuits Magazine - Spring 2016 - 60
IEEE Solid-State Circuits Magazine - Spring 2016 - 61
IEEE Solid-State Circuits Magazine - Spring 2016 - 62
IEEE Solid-State Circuits Magazine - Spring 2016 - 63
IEEE Solid-State Circuits Magazine - Spring 2016 - 64
IEEE Solid-State Circuits Magazine - Spring 2016 - 65
IEEE Solid-State Circuits Magazine - Spring 2016 - 66
IEEE Solid-State Circuits Magazine - Spring 2016 - 67
IEEE Solid-State Circuits Magazine - Spring 2016 - 68
IEEE Solid-State Circuits Magazine - Spring 2016 - 69
IEEE Solid-State Circuits Magazine - Spring 2016 - 70
IEEE Solid-State Circuits Magazine - Spring 2016 - 71
IEEE Solid-State Circuits Magazine - Spring 2016 - 72
IEEE Solid-State Circuits Magazine - Spring 2016 - 73
IEEE Solid-State Circuits Magazine - Spring 2016 - 74
IEEE Solid-State Circuits Magazine - Spring 2016 - 75
IEEE Solid-State Circuits Magazine - Spring 2016 - 76
IEEE Solid-State Circuits Magazine - Spring 2016 - 77
IEEE Solid-State Circuits Magazine - Spring 2016 - 78
IEEE Solid-State Circuits Magazine - Spring 2016 - 79
IEEE Solid-State Circuits Magazine - Spring 2016 - 80
IEEE Solid-State Circuits Magazine - Spring 2016 - 81
IEEE Solid-State Circuits Magazine - Spring 2016 - 82
IEEE Solid-State Circuits Magazine - Spring 2016 - 83
IEEE Solid-State Circuits Magazine - Spring 2016 - 84
IEEE Solid-State Circuits Magazine - Spring 2016 - 85
IEEE Solid-State Circuits Magazine - Spring 2016 - 86
IEEE Solid-State Circuits Magazine - Spring 2016 - 87
IEEE Solid-State Circuits Magazine - Spring 2016 - 88
IEEE Solid-State Circuits Magazine - Spring 2016 - 89
IEEE Solid-State Circuits Magazine - Spring 2016 - 90
IEEE Solid-State Circuits Magazine - Spring 2016 - 91
IEEE Solid-State Circuits Magazine - Spring 2016 - 92
IEEE Solid-State Circuits Magazine - Spring 2016 - 93
IEEE Solid-State Circuits Magazine - Spring 2016 - 94
IEEE Solid-State Circuits Magazine - Spring 2016 - 95
IEEE Solid-State Circuits Magazine - Spring 2016 - 96
IEEE Solid-State Circuits Magazine - Spring 2016 - 97
IEEE Solid-State Circuits Magazine - Spring 2016 - 98
IEEE Solid-State Circuits Magazine - Spring 2016 - 99
IEEE Solid-State Circuits Magazine - Spring 2016 - 100
IEEE Solid-State Circuits Magazine - Spring 2016 - 101
IEEE Solid-State Circuits Magazine - Spring 2016 - 102
IEEE Solid-State Circuits Magazine - Spring 2016 - 103
IEEE Solid-State Circuits Magazine - Spring 2016 - 104
IEEE Solid-State Circuits Magazine - Spring 2016 - 105
IEEE Solid-State Circuits Magazine - Spring 2016 - 106
IEEE Solid-State Circuits Magazine - Spring 2016 - 107
IEEE Solid-State Circuits Magazine - Spring 2016 - 108
IEEE Solid-State Circuits Magazine - Spring 2016 - 109
IEEE Solid-State Circuits Magazine - Spring 2016 - 110
IEEE Solid-State Circuits Magazine - Spring 2016 - 111
IEEE Solid-State Circuits Magazine - Spring 2016 - 112
IEEE Solid-State Circuits Magazine - Spring 2016 - 113
IEEE Solid-State Circuits Magazine - Spring 2016 - 114
IEEE Solid-State Circuits Magazine - Spring 2016 - 115
IEEE Solid-State Circuits Magazine - Spring 2016 - 116
IEEE Solid-State Circuits Magazine - Spring 2016 - 117
IEEE Solid-State Circuits Magazine - Spring 2016 - 118
IEEE Solid-State Circuits Magazine - Spring 2016 - 119
IEEE Solid-State Circuits Magazine - Spring 2016 - 120
IEEE Solid-State Circuits Magazine - Spring 2016 - 121
IEEE Solid-State Circuits Magazine - Spring 2016 - 122
IEEE Solid-State Circuits Magazine - Spring 2016 - 123
IEEE Solid-State Circuits Magazine - Spring 2016 - 124
IEEE Solid-State Circuits Magazine - Spring 2016 - Cover3
IEEE Solid-State Circuits Magazine - Spring 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com