IEEE Solid-State Circuits Magazine - Spring 2016 - 92
of stages are kept constant. A very
interesting observation about Fig-
ure 14(a) is that there is the optimum
point where both h and IOUT are at
maximum for each frequency. When
the area ratio of pump capacitor to
switching circuit is large, the pump
is in a state where the charge trans-
fer is incomplete under a given fre-
quency. As a result, IOUT is relatively
small. When N and f are given, the
relationship between h and IOUT in (8)
suggests that h is a function of IOUT
mainly because C is a weak function
of the area ratio and the contribution
of a B and a T is minor. Therefore, h
is also relatively small when IOUT is
small. As the area ratio decreases,
a larger amount of charges can be
transferred in a half clock period.
As a result, IOUT increases, thereby
h also increases through the sec-
ond term of (8). Thus, it is easy to
determine the optimum area ratio
by clock frequency, at which both
IOUT and h are maximized. Then, the
required total pump area is calcu-
lated to output a targeted IOUT.
This procedure is repeated for
various stages to determine the
maximum h per area, as shown in
Figure 14(b). You can select the best
point on the curves. In this example,
you may want to select the design
parameters to prioritize either area
or power efficiency, as shown in Fig-
ure 14(c), or to have moderate area
and power efficiency between the
two extreme cases.
In this Part 2, we reviewed the struc-
ture of integrated switching devices
and capacitors, an equivalent circuit
and power efficiency of the charge
pump, and several design optimiza-
tions. In Part 3, we will review state of
the art of switching circuits and appli-
cations of charge pumps.
References
[1] T. Tanzawa, "Innovation of switched-
capacitor voltage multiplier-Part 1:
A brief history," IEEE Solid-State Circuits Mag., vol. 8, no. 1, pp. 51-59, Jan.
2016.
[2] H. Greinacher, "The ionometer and
its application to the measurement
92
S P R I N G 2 0 16
of radium and röntgen rays," Phys. Z.,
vol. 15, pp. 410-415, 1914
[3] A. H. Falkner, "Generalised Cockcroft-
Walton voltage multipliers," Electron.
Lett., vol. 9, no. 25, pp. 585-586, Dec.
1973.
[4] J. F. Dickson, "On-chip high-voltage
generation in MNOS integrated cir-
cuits using an improved voltage mul-
tiplier technique," IEEE J. Solid-State
Circuits, vol. SSC-11, no. 3, pp. 374-378,
June 1976.
[5] T. Tanzawa, "On two-phase switched-
capacitor multipliers with minimum
circuit area," IEEE Trans. Circuits Syst.
I, vol. 57, no. 10, pp. 2602-2608, Oct.
2010.
[6] K. Sawada, Y. Sugawara, and S. Masui,
"An on-chip high-voltage generator
circuit for EEPROMs with a power sup-
ply voltage below 2 V," in Proc. Symp.
VLSI Circuits Dig. Technical Papers, June
1995, pp. 75-76.
[7] S. Storti, F. Consiglieri, and M. Paparo,
"A 30-A 30-V DMOS motor control-
ler and driver," IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1394-1401, Dec.
1988.
[8] T. W. Yoo and K. Chang, "Theoretical
and experimental development of 10
and 35 GHz rectennas," IEEE Trans.
Microwave Theory Tech., vol. 40, no. 6,
pp. 1259-1266, June 1992.
[9] M. Mihara, Y. Miyawaki, O. Ishizaki, T.
Hayasaka, K. Kobayashi, T. Omae, H.
Kimura, S. Shimizu, H. Makimoto, Y.
Kawajiri, N. Wada, H. Sonoyama, and
J. Etoh, "A 29-mm2 1.8V-only 16Mb DI-
NOR flash memory with gate-protect-
ed poly-diode charge pump," in Proc.
ISSCC Dig. Technical Papers, Nov. 1999,
pp. 114,111-114,115.
[10] J. F. Dickson, "Voltage multiplier em-
ploying clock gated transistor chain,"
U.S. Patent 4214174A, July 22, 1980.
[11] S. D'Arrigo, G. Imondi, G. Santin, M. Gill,
R. Cleavelin, S. Spaglicca, E. Tomassetti,
S. Lin, A. Nguyen, P. Shah, G. Savarese,
and D. McElroy, "A 5V-only 256k Bit
CMOS flash EEPROM," in Proc. ISSCC Dig.
Technical Papers, Feb. 1989, pp. 132-133.
[12] V. Dham, D. Oto, K. Gudger, G. Con-
gwer, Yaw Hu, J. Olund, and S. Nieh, "A
5V-only E2PROM using 1.5µ lithogra-
phy," in Proc. ISSCC, 1983, pp. 166-167.
[13] A. Umezawa, S. Atsumi, M. Kuriyama,
H. Banba, K. Imamiya, K. Naruke, S.
Yamada, E. Obi, M. Oshikiri, T. Suzuki,
and S. Tanaka, "A 5V-only operation
0.6μm flash EEPROM with row decod-
er scheme in triple-well structure,"
IEEE J. Solid-State Circuits, vol. 27, no.
11, pp. 1540-1546, Nov. 1992.
[14] J. Wu and K. Chang, "MOS charge
pumps for low-voltage operation,"
IEEE J. Solid-State Circuits, vol. 33, no.
4, pp. 592-597, Apr. 1998.
[15] M. Bloch, C. Lauterbauch, and W. We-
ber, "High efficiency charge pump
circuit for negative high voltage gen-
eration at 2 V supply voltage," in Proc.
ESSCIRC, 1998, pp. 100-103.
[16] D. Somasekhar, B. Srinivasan, G. Pandya,
F. Hamzaoglu, M. Khellah, T. Karnik, and
K. Zhang, "Multi-phase 1 GHz voltage
doubler charge pump in 32 nm logic
process," IEEE J. Solid-State Circuits, vol.
45, no. 4, pp. 751-758, 2010.
[17] T. Tanzawa and T. Tanaka, "A dynamic
analysis of the Dickson charge pump
IEEE SOLID-STATE CIRCUITS MAGAZINE
circuit," IEEE J. Solid-State Circuits, vol.
32, no. 8, pp. 1231-1240, Aug. 1997.
[18] T. Tanzawa and S. Atsumi, "Optimiza-
tion of word-line booster circuits for
low-voltage flash memories," IEEE J.
Solid-State Circuits, vol. 34, no. 8, pp.
1091-1098, Aug. 1999.
[19] G. Palumbo, D. Pappalardo, and M.
Gaibotti, "Charge-pump circuits: Pow-
er-consumption optimization," IEEE
Trans. Circuits Syst. I, vol. 49, no. 11,
pp. 1535-1542, Nov. 2002.
[20] T. Tanzawa, "An optimum design for
integrated switched-capacitor Dick-
son charge pump multipliers with
area power balance," IEEE Trans. Power Electron., vol. 29, no. 2, pp. 534-538,
2014.
[21] T. Tanzawa, "A switch-resistance-
aware Dickson charge pump model
for optimizing clock frequency," IEEE
Trans. Circuits Syst. II, vol. 58, no. 6, pp.
336-340, 2011.
[22] T. Tanzawa, "A comprehensive opti-
mization methodology for designing
charge pump voltage multipliers," in
Proc. IEEE Int. Conf. Circuits and Systems,
May 2015, pp. 1358-1361.
[23] P. Favrat, P. Deval, and M. J. Declercq,
"A high-efficiency CMOS voltage dou-
bler," IEEE J. Solid-State Circuits, vol.
33, no. 3, pp. 410-416, Mar. 1998.
[24] T. Tanzawa, "On-chip high-voltage
generator deign," presented at IEEE
Int. Conf. Circuits Systems, May 2012.
[25] T. Tanzawa, "On-chip high-voltage
charge pump deign," presented at IEEE
European Solid-State Circuits Conf., Sept.
2014.
[26] T. Tanzawa, "Design of DC-DC Dickson
charge pump," in On-Chip High-Voltage
Generator Design, 2nd ed. New York:
Springer, 2015, ch. 3, pp. 106-118.
About the Author
Toru Tanzawa (toru.tanzawa.jp@ieee.
org) is a distinguished member of tech-
nical staff at Micron Memory Japan,
Inc. He received the Ph.D. degree in
electrical engineering from The Uni-
versity of Tokyo, Japan, in 2002. He
has been with Toshiba and Micron,
where he has worked on the circuit
design of high-density NAND flash,
high-speed, low-voltage NOR flash,
and RF-CMOS wireless ICs since 1992.
He holds 177 granted U.S. patents,
has published 40 papers in IEEE con-
ferences and journals, and wrote the
book On-Chip High-Voltage Generator
Design: Design Methodology for Charge
Pumps, second edition (Springer, 2015)
and "Chapter 3: Low Power Memory
Design" in Power Aware Design Methodologies (Kluwer Academic, 2002). He
is a Fellow of the IEEE with a citation
of contributions to integrated high-
voltage circuits.
Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Spring 2016
IEEE Solid-State Circuits Magazine - Spring 2016 - Cover1
IEEE Solid-State Circuits Magazine - Spring 2016 - Cover2
IEEE Solid-State Circuits Magazine - Spring 2016 - 1
IEEE Solid-State Circuits Magazine - Spring 2016 - 2
IEEE Solid-State Circuits Magazine - Spring 2016 - 3
IEEE Solid-State Circuits Magazine - Spring 2016 - 4
IEEE Solid-State Circuits Magazine - Spring 2016 - 5
IEEE Solid-State Circuits Magazine - Spring 2016 - 6
IEEE Solid-State Circuits Magazine - Spring 2016 - 7
IEEE Solid-State Circuits Magazine - Spring 2016 - 8
IEEE Solid-State Circuits Magazine - Spring 2016 - 9
IEEE Solid-State Circuits Magazine - Spring 2016 - 10
IEEE Solid-State Circuits Magazine - Spring 2016 - 11
IEEE Solid-State Circuits Magazine - Spring 2016 - 12
IEEE Solid-State Circuits Magazine - Spring 2016 - 13
IEEE Solid-State Circuits Magazine - Spring 2016 - 14
IEEE Solid-State Circuits Magazine - Spring 2016 - 15
IEEE Solid-State Circuits Magazine - Spring 2016 - 16
IEEE Solid-State Circuits Magazine - Spring 2016 - 17
IEEE Solid-State Circuits Magazine - Spring 2016 - 18
IEEE Solid-State Circuits Magazine - Spring 2016 - 19
IEEE Solid-State Circuits Magazine - Spring 2016 - 20
IEEE Solid-State Circuits Magazine - Spring 2016 - 21
IEEE Solid-State Circuits Magazine - Spring 2016 - 22
IEEE Solid-State Circuits Magazine - Spring 2016 - 23
IEEE Solid-State Circuits Magazine - Spring 2016 - 24
IEEE Solid-State Circuits Magazine - Spring 2016 - 25
IEEE Solid-State Circuits Magazine - Spring 2016 - 26
IEEE Solid-State Circuits Magazine - Spring 2016 - 27
IEEE Solid-State Circuits Magazine - Spring 2016 - 28
IEEE Solid-State Circuits Magazine - Spring 2016 - 29
IEEE Solid-State Circuits Magazine - Spring 2016 - 30
IEEE Solid-State Circuits Magazine - Spring 2016 - 31
IEEE Solid-State Circuits Magazine - Spring 2016 - 32
IEEE Solid-State Circuits Magazine - Spring 2016 - 33
IEEE Solid-State Circuits Magazine - Spring 2016 - 34
IEEE Solid-State Circuits Magazine - Spring 2016 - 35
IEEE Solid-State Circuits Magazine - Spring 2016 - 36
IEEE Solid-State Circuits Magazine - Spring 2016 - 37
IEEE Solid-State Circuits Magazine - Spring 2016 - 38
IEEE Solid-State Circuits Magazine - Spring 2016 - 39
IEEE Solid-State Circuits Magazine - Spring 2016 - 40
IEEE Solid-State Circuits Magazine - Spring 2016 - 41
IEEE Solid-State Circuits Magazine - Spring 2016 - 42
IEEE Solid-State Circuits Magazine - Spring 2016 - 43
IEEE Solid-State Circuits Magazine - Spring 2016 - 44
IEEE Solid-State Circuits Magazine - Spring 2016 - 45
IEEE Solid-State Circuits Magazine - Spring 2016 - 46
IEEE Solid-State Circuits Magazine - Spring 2016 - 47
IEEE Solid-State Circuits Magazine - Spring 2016 - 48
IEEE Solid-State Circuits Magazine - Spring 2016 - 49
IEEE Solid-State Circuits Magazine - Spring 2016 - 50
IEEE Solid-State Circuits Magazine - Spring 2016 - 51
IEEE Solid-State Circuits Magazine - Spring 2016 - 52
IEEE Solid-State Circuits Magazine - Spring 2016 - 53
IEEE Solid-State Circuits Magazine - Spring 2016 - 54
IEEE Solid-State Circuits Magazine - Spring 2016 - 55
IEEE Solid-State Circuits Magazine - Spring 2016 - 56
IEEE Solid-State Circuits Magazine - Spring 2016 - 57
IEEE Solid-State Circuits Magazine - Spring 2016 - 58
IEEE Solid-State Circuits Magazine - Spring 2016 - 59
IEEE Solid-State Circuits Magazine - Spring 2016 - 60
IEEE Solid-State Circuits Magazine - Spring 2016 - 61
IEEE Solid-State Circuits Magazine - Spring 2016 - 62
IEEE Solid-State Circuits Magazine - Spring 2016 - 63
IEEE Solid-State Circuits Magazine - Spring 2016 - 64
IEEE Solid-State Circuits Magazine - Spring 2016 - 65
IEEE Solid-State Circuits Magazine - Spring 2016 - 66
IEEE Solid-State Circuits Magazine - Spring 2016 - 67
IEEE Solid-State Circuits Magazine - Spring 2016 - 68
IEEE Solid-State Circuits Magazine - Spring 2016 - 69
IEEE Solid-State Circuits Magazine - Spring 2016 - 70
IEEE Solid-State Circuits Magazine - Spring 2016 - 71
IEEE Solid-State Circuits Magazine - Spring 2016 - 72
IEEE Solid-State Circuits Magazine - Spring 2016 - 73
IEEE Solid-State Circuits Magazine - Spring 2016 - 74
IEEE Solid-State Circuits Magazine - Spring 2016 - 75
IEEE Solid-State Circuits Magazine - Spring 2016 - 76
IEEE Solid-State Circuits Magazine - Spring 2016 - 77
IEEE Solid-State Circuits Magazine - Spring 2016 - 78
IEEE Solid-State Circuits Magazine - Spring 2016 - 79
IEEE Solid-State Circuits Magazine - Spring 2016 - 80
IEEE Solid-State Circuits Magazine - Spring 2016 - 81
IEEE Solid-State Circuits Magazine - Spring 2016 - 82
IEEE Solid-State Circuits Magazine - Spring 2016 - 83
IEEE Solid-State Circuits Magazine - Spring 2016 - 84
IEEE Solid-State Circuits Magazine - Spring 2016 - 85
IEEE Solid-State Circuits Magazine - Spring 2016 - 86
IEEE Solid-State Circuits Magazine - Spring 2016 - 87
IEEE Solid-State Circuits Magazine - Spring 2016 - 88
IEEE Solid-State Circuits Magazine - Spring 2016 - 89
IEEE Solid-State Circuits Magazine - Spring 2016 - 90
IEEE Solid-State Circuits Magazine - Spring 2016 - 91
IEEE Solid-State Circuits Magazine - Spring 2016 - 92
IEEE Solid-State Circuits Magazine - Spring 2016 - 93
IEEE Solid-State Circuits Magazine - Spring 2016 - 94
IEEE Solid-State Circuits Magazine - Spring 2016 - 95
IEEE Solid-State Circuits Magazine - Spring 2016 - 96
IEEE Solid-State Circuits Magazine - Spring 2016 - 97
IEEE Solid-State Circuits Magazine - Spring 2016 - 98
IEEE Solid-State Circuits Magazine - Spring 2016 - 99
IEEE Solid-State Circuits Magazine - Spring 2016 - 100
IEEE Solid-State Circuits Magazine - Spring 2016 - 101
IEEE Solid-State Circuits Magazine - Spring 2016 - 102
IEEE Solid-State Circuits Magazine - Spring 2016 - 103
IEEE Solid-State Circuits Magazine - Spring 2016 - 104
IEEE Solid-State Circuits Magazine - Spring 2016 - 105
IEEE Solid-State Circuits Magazine - Spring 2016 - 106
IEEE Solid-State Circuits Magazine - Spring 2016 - 107
IEEE Solid-State Circuits Magazine - Spring 2016 - 108
IEEE Solid-State Circuits Magazine - Spring 2016 - 109
IEEE Solid-State Circuits Magazine - Spring 2016 - 110
IEEE Solid-State Circuits Magazine - Spring 2016 - 111
IEEE Solid-State Circuits Magazine - Spring 2016 - 112
IEEE Solid-State Circuits Magazine - Spring 2016 - 113
IEEE Solid-State Circuits Magazine - Spring 2016 - 114
IEEE Solid-State Circuits Magazine - Spring 2016 - 115
IEEE Solid-State Circuits Magazine - Spring 2016 - 116
IEEE Solid-State Circuits Magazine - Spring 2016 - 117
IEEE Solid-State Circuits Magazine - Spring 2016 - 118
IEEE Solid-State Circuits Magazine - Spring 2016 - 119
IEEE Solid-State Circuits Magazine - Spring 2016 - 120
IEEE Solid-State Circuits Magazine - Spring 2016 - 121
IEEE Solid-State Circuits Magazine - Spring 2016 - 122
IEEE Solid-State Circuits Magazine - Spring 2016 - 123
IEEE Solid-State Circuits Magazine - Spring 2016 - 124
IEEE Solid-State Circuits Magazine - Spring 2016 - Cover3
IEEE Solid-State Circuits Magazine - Spring 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com