IEEE Solid-State Circuits Magazine - Spring 2017 - 13

guest editorial

Rajeev Jain

The 2017 IEEE Donald O. Pederson Award Winners

I

It is a pleasure to guest edit this special issue honoring the 2017 recipients
of the IEEE Donald O. Pederson Award
in Solid-State Circuits: Dr. Takao
Nishitani and Dr. John Thompson.
The late Prof. Pederson pioneered the
semiconductor industry as we know
it today, not only through many generations of Berkeley students but also
through seminal work on computeraided design tools (especially SPICE)
that made it possible to handle the ever-growing complexity of ICs, without
which, Moore's law notwithstanding,
we may never have been able to scale
the design effort and design complex
chips. It is therefore befitting that we
honor two pioneers of a key segment
on the IC industry, which we take for
granted today, the digital signal processing industry.
The 1980 IEEE International SolidState Circuits Conference (ISSCC) papers by Takao and John triggered in
motion the digital revolution starting
with digital telephony in the 1980s, on
to digital television and now the allencompassing and ubiquitous smartphone. At the heart of all these devices
are one or more embedded digital signal processors (DSPs), all of which
still incorporate three fundamental
processor innovations that Takao and
John gave us 36 years ago: 1) adding a
multiplier to the arithmetic logic unit
(ALU), 2) supporting the concurrent
execution of both the multiplier and
the adder, and (3) a bus architecture

Digital Object Identifier 10.1109/MSSC.2017.2698658
Date of publication: 21 June 2017

that supports concurrent fetches of
in ICs and digital signal processing
program memory and data memory. It
theory had led to the emergence of
is also noteworthy that, at ISSCC this
digital telephony in the 1970s. A key
year, a new session on deep-learning
challenge was performing the hundreds
processors was presented, and all
of multiplications and additions rethese processors build on the original
quired in the 125-µs sample interval
DSP innovations of John and Takao,
needed for processing voice signals.
incorporating many
Conventional microof the same architecprocessors had instructural features.
tions cycles that were
It's interesting
In digital signal pro2-5 µs long, and multo examine the
cessing algorithms, it is
tiplications were comcommon necessity
common for the output
puted by a series of
that led Takao
of the multiplier to be
shift and conditionaland John to the
accumulated over sevadd instructions reDSP inventions
eral samples. The add/
quiring several cycles
independently
multiply concurrency
per multiplication,
and in two
supported the result of
leading to execution
different parts
the multiplier from one
times well in excess
of the world.
cycle being accumuof the upper bound
lated in the next cycle
of 125 µs. Therefore,
concurrently with the next product
multiple microprocessors were used
being computed in the multiplier. While
to meet the throughput requirements,
John pipelined the multiplier and the
or dedicated circuits were used to
ALU, Takao introduced a sub bus conimplement the new digital voice band
nected to the ALU so that data transfer
standards, when they were released
via the main bus to the multiplier, and
by the standards committee. So the
data input to the accumulator via the
solutions were either expensive or
sub bus, can be performed in parallel.
took too long to bring to market beThese innovations together with the
cause a new chip was needed for a
hardware multiplier significantly cut
new standard.
the processing time compared to conThe invention of the DSP delivered
ventional microprocessors at the time
the real-time throughput of dedicated
and allowed "real-time" digital signal
circuits with the flexibility of softprocessing on a programmable singleware programmability at a reasonchip processor for the first time.
able cost point. This was a new way
Necessity is the mother of invento think about digital signal processing.
tion, as they say, and it's interesting
Now systems could be upgraded in the
to examine the common necessity
field from one standard to the next via
that led Takao and John to the DSP
software, and system implementation
inventions independently and in two
(continued on p. 40)
different parts of the world. Advances

IEEE SOLID-STATE CIRCUITS MAGAZINE

S p r i n g 2 0 17

13



Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Spring 2017

IEEE Solid-State Circuits Magazine - Spring 2017 - Cover1
IEEE Solid-State Circuits Magazine - Spring 2017 - Cover2
IEEE Solid-State Circuits Magazine - Spring 2017 - 1
IEEE Solid-State Circuits Magazine - Spring 2017 - 2
IEEE Solid-State Circuits Magazine - Spring 2017 - 3
IEEE Solid-State Circuits Magazine - Spring 2017 - 4
IEEE Solid-State Circuits Magazine - Spring 2017 - 5
IEEE Solid-State Circuits Magazine - Spring 2017 - 6
IEEE Solid-State Circuits Magazine - Spring 2017 - 7
IEEE Solid-State Circuits Magazine - Spring 2017 - 8
IEEE Solid-State Circuits Magazine - Spring 2017 - 9
IEEE Solid-State Circuits Magazine - Spring 2017 - 10
IEEE Solid-State Circuits Magazine - Spring 2017 - 11
IEEE Solid-State Circuits Magazine - Spring 2017 - 12
IEEE Solid-State Circuits Magazine - Spring 2017 - 13
IEEE Solid-State Circuits Magazine - Spring 2017 - 14
IEEE Solid-State Circuits Magazine - Spring 2017 - 15
IEEE Solid-State Circuits Magazine - Spring 2017 - 16
IEEE Solid-State Circuits Magazine - Spring 2017 - 17
IEEE Solid-State Circuits Magazine - Spring 2017 - 18
IEEE Solid-State Circuits Magazine - Spring 2017 - 19
IEEE Solid-State Circuits Magazine - Spring 2017 - 20
IEEE Solid-State Circuits Magazine - Spring 2017 - 21
IEEE Solid-State Circuits Magazine - Spring 2017 - 22
IEEE Solid-State Circuits Magazine - Spring 2017 - 23
IEEE Solid-State Circuits Magazine - Spring 2017 - 24
IEEE Solid-State Circuits Magazine - Spring 2017 - 25
IEEE Solid-State Circuits Magazine - Spring 2017 - 26
IEEE Solid-State Circuits Magazine - Spring 2017 - 27
IEEE Solid-State Circuits Magazine - Spring 2017 - 28
IEEE Solid-State Circuits Magazine - Spring 2017 - 29
IEEE Solid-State Circuits Magazine - Spring 2017 - 30
IEEE Solid-State Circuits Magazine - Spring 2017 - 31
IEEE Solid-State Circuits Magazine - Spring 2017 - 32
IEEE Solid-State Circuits Magazine - Spring 2017 - 33
IEEE Solid-State Circuits Magazine - Spring 2017 - 34
IEEE Solid-State Circuits Magazine - Spring 2017 - 35
IEEE Solid-State Circuits Magazine - Spring 2017 - 36
IEEE Solid-State Circuits Magazine - Spring 2017 - 37
IEEE Solid-State Circuits Magazine - Spring 2017 - 38
IEEE Solid-State Circuits Magazine - Spring 2017 - 39
IEEE Solid-State Circuits Magazine - Spring 2017 - 40
IEEE Solid-State Circuits Magazine - Spring 2017 - 41
IEEE Solid-State Circuits Magazine - Spring 2017 - 42
IEEE Solid-State Circuits Magazine - Spring 2017 - 43
IEEE Solid-State Circuits Magazine - Spring 2017 - 44
IEEE Solid-State Circuits Magazine - Spring 2017 - 45
IEEE Solid-State Circuits Magazine - Spring 2017 - 46
IEEE Solid-State Circuits Magazine - Spring 2017 - 47
IEEE Solid-State Circuits Magazine - Spring 2017 - 48
IEEE Solid-State Circuits Magazine - Spring 2017 - 49
IEEE Solid-State Circuits Magazine - Spring 2017 - 50
IEEE Solid-State Circuits Magazine - Spring 2017 - 51
IEEE Solid-State Circuits Magazine - Spring 2017 - 52
IEEE Solid-State Circuits Magazine - Spring 2017 - 53
IEEE Solid-State Circuits Magazine - Spring 2017 - 54
IEEE Solid-State Circuits Magazine - Spring 2017 - 55
IEEE Solid-State Circuits Magazine - Spring 2017 - 56
IEEE Solid-State Circuits Magazine - Spring 2017 - 57
IEEE Solid-State Circuits Magazine - Spring 2017 - 58
IEEE Solid-State Circuits Magazine - Spring 2017 - 59
IEEE Solid-State Circuits Magazine - Spring 2017 - 60
IEEE Solid-State Circuits Magazine - Spring 2017 - 61
IEEE Solid-State Circuits Magazine - Spring 2017 - 62
IEEE Solid-State Circuits Magazine - Spring 2017 - 63
IEEE Solid-State Circuits Magazine - Spring 2017 - 64
IEEE Solid-State Circuits Magazine - Spring 2017 - 65
IEEE Solid-State Circuits Magazine - Spring 2017 - 66
IEEE Solid-State Circuits Magazine - Spring 2017 - 67
IEEE Solid-State Circuits Magazine - Spring 2017 - 68
IEEE Solid-State Circuits Magazine - Spring 2017 - 69
IEEE Solid-State Circuits Magazine - Spring 2017 - 70
IEEE Solid-State Circuits Magazine - Spring 2017 - 71
IEEE Solid-State Circuits Magazine - Spring 2017 - 72
IEEE Solid-State Circuits Magazine - Spring 2017 - 73
IEEE Solid-State Circuits Magazine - Spring 2017 - 74
IEEE Solid-State Circuits Magazine - Spring 2017 - 75
IEEE Solid-State Circuits Magazine - Spring 2017 - 76
IEEE Solid-State Circuits Magazine - Spring 2017 - 77
IEEE Solid-State Circuits Magazine - Spring 2017 - 78
IEEE Solid-State Circuits Magazine - Spring 2017 - 79
IEEE Solid-State Circuits Magazine - Spring 2017 - 80
IEEE Solid-State Circuits Magazine - Spring 2017 - 81
IEEE Solid-State Circuits Magazine - Spring 2017 - 82
IEEE Solid-State Circuits Magazine - Spring 2017 - 83
IEEE Solid-State Circuits Magazine - Spring 2017 - 84
IEEE Solid-State Circuits Magazine - Spring 2017 - 85
IEEE Solid-State Circuits Magazine - Spring 2017 - 86
IEEE Solid-State Circuits Magazine - Spring 2017 - 87
IEEE Solid-State Circuits Magazine - Spring 2017 - 88
IEEE Solid-State Circuits Magazine - Spring 2017 - 89
IEEE Solid-State Circuits Magazine - Spring 2017 - 90
IEEE Solid-State Circuits Magazine - Spring 2017 - 91
IEEE Solid-State Circuits Magazine - Spring 2017 - 92
IEEE Solid-State Circuits Magazine - Spring 2017 - 93
IEEE Solid-State Circuits Magazine - Spring 2017 - 94
IEEE Solid-State Circuits Magazine - Spring 2017 - 95
IEEE Solid-State Circuits Magazine - Spring 2017 - 96
IEEE Solid-State Circuits Magazine - Spring 2017 - Cover3
IEEE Solid-State Circuits Magazine - Spring 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com