IEEE Solid-State Circuits Magazine - Spring 2017 - 81

how AI can be capable of discovering
patterns in the information and large
amount of data that humans cannot
recognize, extending the exploration
space of scientific truth. He also demonstrated how AI can be creative by
playing AI-composed music.
Hoi-Jun Yoo discussed how the
human race has evolved through
many technological revolutions; from
the discovery of fire to the industrial
revolution, the human race has always
been worried about negative impacts
that new technology brings to society.
Yoo said that the current developments
in AI are simply just another technological advancement that humans
must adapt to and accept. He said that
the challenge lies in keeping developments in AI under control and to
ensure that AI technology is applied to
useful applications for the benefit of
the human race by commenting that
A.I is rather "augmented" intelligence
than "artificial" intelligence.
Ruchir Puri talked about how being
a human is fundamentally different from a machine by comparing
the amount of data for a human to
learn something new versus that for
a machine. Humans have traits such
a caring, empathy, sharing, ingenuity,
and innovation. These human traits
might prove to be elusive to machines
for a long time. Puri discussed that,
although AI's impact on society will
accelerate further to enable machines
and humans to collectively solve problems and big societal challenges, it will
be a while before we can answer the
question of when machines will take
over the world.
-Abira Sengupta

Quantum Engineering:
Hype, Spin, or Reality?
Quantum engineering is an emerging discipline that involves studies
of materials, devices, circuits, and
architectures necessary to develop
quantum-based systems. Recently,
quantum computing has received
attention, and large investments
have been made into this field. Is this
interest hype? Should views on computing be revised? Will Moore's law

ISSCC attendees.

compete with or enable new quantum technologies?
Panelists James S. Clarke (Intel,
Orgeon), Kenneth Shepard (Columbia
University, New York), Lieven Vandersypen (Delft University of Technology,
The Netherlands), Francesco Regazzoni
(University of Lugano, Switzerland),
Andrea Morello (University of New
South Wales, Australia), and Yoshihisa
Yamamoto (Japan Science and Technology Agency) tackled these questions and offered their insights. This
session was organized and moderated
by Edorado Charbon (Delft University
of Technology, The Netherlands). The
panel addressed several issues that are
currently unclear or unknown about
quantum engineering.
To kick off the evening session,
the panel discussed the definition of
quantum engineering. So what exactly
is quantum engineering? They defined
quantum engineering as the whole
ecosystem being developed and needing to implement the quantum computer. This includes development of
quantum algorithms, quantum gates,
enabling technologies such as cryoCMOS, chemistry, and error correction codes.
The panel talked about quantum
engineering and how it is like the race
to the moon: not everybody is convinced about it, but everybody wants
to be the first to do it. Similar to the
race to the moon, quantum engineering is a multidisciplinary, challenging, and extremely cross-domain

effort. It is not completely clear if
and for what quantum computers will
be used. Panelists expressed that we
have a number of applications that
can benefit from it, but even if we do
not achieve the results that are envisioned now, quantum engineering
will bring some side results (such as
cryo-electronics, a new multidisciplinary curriculum, the deployment
of a novel and more reliable public
key infrastructure) that will have a
positive effect on humanity, as the
space race did in the past, allowing
for things such as telemetry, memory
form foam, water filters, joysticks,
scratch resistant glasses, smoke detectors, and protective paints.
Much time was spent talking about
Moore's law and how it is an enabler
for quantum computers, not a show
stopper. The panel commented that
the most important problem to solve
for scalable quantum computers is the
density of connections, which can be
addressed by changing the paradigm
for packaging or by sharing the connections and multiplexing them. They
said that several negative predictions
about quantum computers have been
already proved wrong. For instance,
what students had a hard time understanding and grasping few years ago
can now, thanks to technological developments, be visualized and "touched"
with few lines of MATLAB, allowing
them to understand the concepts very
well and thus make a contribution to
the field.

IEEE SOLID-STATE CIRCUITS MAGAZINE

s p r i n g 2 0 17

81



Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Spring 2017

IEEE Solid-State Circuits Magazine - Spring 2017 - Cover1
IEEE Solid-State Circuits Magazine - Spring 2017 - Cover2
IEEE Solid-State Circuits Magazine - Spring 2017 - 1
IEEE Solid-State Circuits Magazine - Spring 2017 - 2
IEEE Solid-State Circuits Magazine - Spring 2017 - 3
IEEE Solid-State Circuits Magazine - Spring 2017 - 4
IEEE Solid-State Circuits Magazine - Spring 2017 - 5
IEEE Solid-State Circuits Magazine - Spring 2017 - 6
IEEE Solid-State Circuits Magazine - Spring 2017 - 7
IEEE Solid-State Circuits Magazine - Spring 2017 - 8
IEEE Solid-State Circuits Magazine - Spring 2017 - 9
IEEE Solid-State Circuits Magazine - Spring 2017 - 10
IEEE Solid-State Circuits Magazine - Spring 2017 - 11
IEEE Solid-State Circuits Magazine - Spring 2017 - 12
IEEE Solid-State Circuits Magazine - Spring 2017 - 13
IEEE Solid-State Circuits Magazine - Spring 2017 - 14
IEEE Solid-State Circuits Magazine - Spring 2017 - 15
IEEE Solid-State Circuits Magazine - Spring 2017 - 16
IEEE Solid-State Circuits Magazine - Spring 2017 - 17
IEEE Solid-State Circuits Magazine - Spring 2017 - 18
IEEE Solid-State Circuits Magazine - Spring 2017 - 19
IEEE Solid-State Circuits Magazine - Spring 2017 - 20
IEEE Solid-State Circuits Magazine - Spring 2017 - 21
IEEE Solid-State Circuits Magazine - Spring 2017 - 22
IEEE Solid-State Circuits Magazine - Spring 2017 - 23
IEEE Solid-State Circuits Magazine - Spring 2017 - 24
IEEE Solid-State Circuits Magazine - Spring 2017 - 25
IEEE Solid-State Circuits Magazine - Spring 2017 - 26
IEEE Solid-State Circuits Magazine - Spring 2017 - 27
IEEE Solid-State Circuits Magazine - Spring 2017 - 28
IEEE Solid-State Circuits Magazine - Spring 2017 - 29
IEEE Solid-State Circuits Magazine - Spring 2017 - 30
IEEE Solid-State Circuits Magazine - Spring 2017 - 31
IEEE Solid-State Circuits Magazine - Spring 2017 - 32
IEEE Solid-State Circuits Magazine - Spring 2017 - 33
IEEE Solid-State Circuits Magazine - Spring 2017 - 34
IEEE Solid-State Circuits Magazine - Spring 2017 - 35
IEEE Solid-State Circuits Magazine - Spring 2017 - 36
IEEE Solid-State Circuits Magazine - Spring 2017 - 37
IEEE Solid-State Circuits Magazine - Spring 2017 - 38
IEEE Solid-State Circuits Magazine - Spring 2017 - 39
IEEE Solid-State Circuits Magazine - Spring 2017 - 40
IEEE Solid-State Circuits Magazine - Spring 2017 - 41
IEEE Solid-State Circuits Magazine - Spring 2017 - 42
IEEE Solid-State Circuits Magazine - Spring 2017 - 43
IEEE Solid-State Circuits Magazine - Spring 2017 - 44
IEEE Solid-State Circuits Magazine - Spring 2017 - 45
IEEE Solid-State Circuits Magazine - Spring 2017 - 46
IEEE Solid-State Circuits Magazine - Spring 2017 - 47
IEEE Solid-State Circuits Magazine - Spring 2017 - 48
IEEE Solid-State Circuits Magazine - Spring 2017 - 49
IEEE Solid-State Circuits Magazine - Spring 2017 - 50
IEEE Solid-State Circuits Magazine - Spring 2017 - 51
IEEE Solid-State Circuits Magazine - Spring 2017 - 52
IEEE Solid-State Circuits Magazine - Spring 2017 - 53
IEEE Solid-State Circuits Magazine - Spring 2017 - 54
IEEE Solid-State Circuits Magazine - Spring 2017 - 55
IEEE Solid-State Circuits Magazine - Spring 2017 - 56
IEEE Solid-State Circuits Magazine - Spring 2017 - 57
IEEE Solid-State Circuits Magazine - Spring 2017 - 58
IEEE Solid-State Circuits Magazine - Spring 2017 - 59
IEEE Solid-State Circuits Magazine - Spring 2017 - 60
IEEE Solid-State Circuits Magazine - Spring 2017 - 61
IEEE Solid-State Circuits Magazine - Spring 2017 - 62
IEEE Solid-State Circuits Magazine - Spring 2017 - 63
IEEE Solid-State Circuits Magazine - Spring 2017 - 64
IEEE Solid-State Circuits Magazine - Spring 2017 - 65
IEEE Solid-State Circuits Magazine - Spring 2017 - 66
IEEE Solid-State Circuits Magazine - Spring 2017 - 67
IEEE Solid-State Circuits Magazine - Spring 2017 - 68
IEEE Solid-State Circuits Magazine - Spring 2017 - 69
IEEE Solid-State Circuits Magazine - Spring 2017 - 70
IEEE Solid-State Circuits Magazine - Spring 2017 - 71
IEEE Solid-State Circuits Magazine - Spring 2017 - 72
IEEE Solid-State Circuits Magazine - Spring 2017 - 73
IEEE Solid-State Circuits Magazine - Spring 2017 - 74
IEEE Solid-State Circuits Magazine - Spring 2017 - 75
IEEE Solid-State Circuits Magazine - Spring 2017 - 76
IEEE Solid-State Circuits Magazine - Spring 2017 - 77
IEEE Solid-State Circuits Magazine - Spring 2017 - 78
IEEE Solid-State Circuits Magazine - Spring 2017 - 79
IEEE Solid-State Circuits Magazine - Spring 2017 - 80
IEEE Solid-State Circuits Magazine - Spring 2017 - 81
IEEE Solid-State Circuits Magazine - Spring 2017 - 82
IEEE Solid-State Circuits Magazine - Spring 2017 - 83
IEEE Solid-State Circuits Magazine - Spring 2017 - 84
IEEE Solid-State Circuits Magazine - Spring 2017 - 85
IEEE Solid-State Circuits Magazine - Spring 2017 - 86
IEEE Solid-State Circuits Magazine - Spring 2017 - 87
IEEE Solid-State Circuits Magazine - Spring 2017 - 88
IEEE Solid-State Circuits Magazine - Spring 2017 - 89
IEEE Solid-State Circuits Magazine - Spring 2017 - 90
IEEE Solid-State Circuits Magazine - Spring 2017 - 91
IEEE Solid-State Circuits Magazine - Spring 2017 - 92
IEEE Solid-State Circuits Magazine - Spring 2017 - 93
IEEE Solid-State Circuits Magazine - Spring 2017 - 94
IEEE Solid-State Circuits Magazine - Spring 2017 - 95
IEEE Solid-State Circuits Magazine - Spring 2017 - 96
IEEE Solid-State Circuits Magazine - Spring 2017 - Cover3
IEEE Solid-State Circuits Magazine - Spring 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com