IEEE Solid-State Circuits Magazine - Winter 2015 - 17
200
JSSC '10
FOM at 20 MHz (dBc/Hz)
195
190
ISSCC '15
ISSCC '12
ISSCC '15
ISSCC '14
JSSC '13
ISSCC '14
ISSCC '13
ESSCIRC '05
ISSCC '05
ISSCC '11 ASSCC '08 ISSCC '10
JSSC '06
JSSC '06
185
180
ISSCC '08
JSSC '15
ISSCC '12
ISSCC '14
ISSCC '12
JSSC '06
RF SYMP. '08 ISSCC '08
JSSC '09
CICC '07
ISSCC '02
175
ISSCC '06
170
165
0.5
1.5
CICC '10
2.5
6.5
4.5
5.5
Frequency (GHz)
3.5
7.5
8.5
9.5
10.5
Figure 5: An oscillator phase-noise FOM at 20-MHz offset frequency versus oscillation frequency.
10
40
0
35
20
15
10
5
0
-10
ISSCC '14
ISSCC '14
ISSCC '15 ISSCC '12
ISSCC '15
JSSC '09
ISSCC '11
ISSCC '09
ISSCC '10
ISSCC '08
JSSC '07 ISSCC '11 ISSCC '10
ISSCC '13
MTT '09
RFIC '09
RFIC '13
RFIC '11ISSCC '10
8
10
12
14
16 18 20 22
Power (dBm)
24 26
28
Figure 6: The PAE plotted against output amplifier power.
conversion step and bandwidth plotted against SNDR, respectively.
Communication Systems-RF
Subcommittee Chair:
Andreia Cathelin,
STMicroelectronics, Crolles, France
One of the common yet critical
building blocks in a radio frequency
(RF) communication system is the
voltage-controlled oscillator (VCO)
frequency generation circuit. The
race to reduce phase noise, chip
area, and power consumption for
30
Power (dBm)
PAE (%)
25
RFIC '13
JSSC '13
30
-20
-30
ISSCC '15
130 nm SiGe
130 nm SiGe
65 nm 65 nm
65 nm
45 nm
130 nm
InP
InP
45 nm
130 nm
130 nm SiGe
45 nm
-40
-50
65 nm
90 nm
45 nm
-60
150 200 250 300 350 400 450 500 550 600
Frequency (GHz)
Figure 7: Output power versus frequency for mm-wave and submm-wave sources.
synthesizers and VCOs is never ending. Utilizing circuit techniques to
suppress the impact of flicker noise
on phase noise, as well as employing a capacitance-scaling technique
to decrease phase-looked loop (PLL)
filter size are becoming popular.
Very-low phase noise is achieved,
and the VCO figure of merit (FOM)
has reached a new record. The trend
toward better performing VCOs is
shown in Figure 5, where the VCO
FOM versus oscillation frequency
is continuously improving. In an
attempt to remove the bulky quartz
crystal, a highly stable thin-filmbased reference-frequency generator
is reported, attaining a stability of
±3 ppm from 0 to 90 °C.
Reported amplifier power-added
efficiency (PAE) is plotted against
output amplifier power and summarized in Figure 6. At the terahertz
frontier, a phase-locked-based transmitter array has been demonstrated
with sufficient output power beyond
300 GHz to enable numerous practical terahertz applications that
require coherent radiation. The trend
in output power versus frequency in
IEEE SOLID-STATE CIRCUITS MAGAZINE
W I N T E R 2 0 15
17
Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Winter 2015
IEEE Solid-State Circuits Magazine - Winter 2015 - Cover1
IEEE Solid-State Circuits Magazine - Winter 2015 - Cover2
IEEE Solid-State Circuits Magazine - Winter 2015 - 1
IEEE Solid-State Circuits Magazine - Winter 2015 - 2
IEEE Solid-State Circuits Magazine - Winter 2015 - 3
IEEE Solid-State Circuits Magazine - Winter 2015 - 4
IEEE Solid-State Circuits Magazine - Winter 2015 - 5
IEEE Solid-State Circuits Magazine - Winter 2015 - 6
IEEE Solid-State Circuits Magazine - Winter 2015 - 7
IEEE Solid-State Circuits Magazine - Winter 2015 - 8
IEEE Solid-State Circuits Magazine - Winter 2015 - 9
IEEE Solid-State Circuits Magazine - Winter 2015 - 10
IEEE Solid-State Circuits Magazine - Winter 2015 - 11
IEEE Solid-State Circuits Magazine - Winter 2015 - 12
IEEE Solid-State Circuits Magazine - Winter 2015 - 13
IEEE Solid-State Circuits Magazine - Winter 2015 - 14
IEEE Solid-State Circuits Magazine - Winter 2015 - 15
IEEE Solid-State Circuits Magazine - Winter 2015 - 16
IEEE Solid-State Circuits Magazine - Winter 2015 - 17
IEEE Solid-State Circuits Magazine - Winter 2015 - 18
IEEE Solid-State Circuits Magazine - Winter 2015 - 19
IEEE Solid-State Circuits Magazine - Winter 2015 - 20
IEEE Solid-State Circuits Magazine - Winter 2015 - 21
IEEE Solid-State Circuits Magazine - Winter 2015 - 22
IEEE Solid-State Circuits Magazine - Winter 2015 - 23
IEEE Solid-State Circuits Magazine - Winter 2015 - 24
IEEE Solid-State Circuits Magazine - Winter 2015 - 25
IEEE Solid-State Circuits Magazine - Winter 2015 - 26
IEEE Solid-State Circuits Magazine - Winter 2015 - 27
IEEE Solid-State Circuits Magazine - Winter 2015 - 28
IEEE Solid-State Circuits Magazine - Winter 2015 - 29
IEEE Solid-State Circuits Magazine - Winter 2015 - 30
IEEE Solid-State Circuits Magazine - Winter 2015 - 31
IEEE Solid-State Circuits Magazine - Winter 2015 - 32
IEEE Solid-State Circuits Magazine - Winter 2015 - 33
IEEE Solid-State Circuits Magazine - Winter 2015 - 34
IEEE Solid-State Circuits Magazine - Winter 2015 - 35
IEEE Solid-State Circuits Magazine - Winter 2015 - 36
IEEE Solid-State Circuits Magazine - Winter 2015 - 37
IEEE Solid-State Circuits Magazine - Winter 2015 - 38
IEEE Solid-State Circuits Magazine - Winter 2015 - 39
IEEE Solid-State Circuits Magazine - Winter 2015 - 40
IEEE Solid-State Circuits Magazine - Winter 2015 - 41
IEEE Solid-State Circuits Magazine - Winter 2015 - 42
IEEE Solid-State Circuits Magazine - Winter 2015 - 43
IEEE Solid-State Circuits Magazine - Winter 2015 - 44
IEEE Solid-State Circuits Magazine - Winter 2015 - 45
IEEE Solid-State Circuits Magazine - Winter 2015 - 46
IEEE Solid-State Circuits Magazine - Winter 2015 - 47
IEEE Solid-State Circuits Magazine - Winter 2015 - 48
IEEE Solid-State Circuits Magazine - Winter 2015 - Cover3
IEEE Solid-State Circuits Magazine - Winter 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com