IEEE Solid-State Circuits Magazine - Winter 2017 - 18
Graphics
OpenGL
(ES1.1)
2D, 3D
Display
16 b QVGA
Camera
1-2 M
MP3
Accelerator
DSP
Downlink
(Mb/s)
3M
5~8 M
10 M
H.264/AVC
(VGA)
UMTs
0.4-2
2004
2005
2006
300
800
2007
2008
2009
2010
Multi-Core (4-8)
LTE
100
800
2,400
2,400
6,000
2011
2012
2013
H.264/VP9
HDR
H.264/VP9
Dolby
TrueHD/Digiatl+
HSPA+
7-42
WQXGA/WQXGA+
at 60 fpsx2 (VR)
12 MxDual 360° VR
24 M
WMA
Dolby 5.4
HSPA
1.8-7
300
500
-300
20 M
SIMD
Multi-Core (2-4)
VR (Virtual Reality
Vulkan)
WQXGA/WQXGA+
at 60 fps
H.264/AVC
H.264/MVC
(Full HD)
H.264/SVC
AAC Plus
FPU
AR
(Augmented Reality)
SXGA
at 60 fps
16 M
H.264/AVC
(D1)
AAC
EGPRS
0.4
CPU (MIPS)
WVGA
at 60 fps
VGA
Image/Video JPEG, MPEG-4
Audio
OpenGL/VG/MAX
(ES2.0)
DSD
Dolby Atmos
Heterogeneous
Multi-Processing
LTE-A
150-750
6K
12 K
2014
LTE-A
1,600
12 K
100 K
2015
2016
13 K
112 K
2017
Figure 10: Application processor trends in smartphones. VGA: video graphics array; QVGA: quarter VGA; WVGA: wide VGA; SXGA: superextend GA; HD: high definition; HDR: high dynamic range; AAC: advanced audio coding; WMA: Windows Media Audio; DSD: Direct-Stream
Digital; DSP: digital signal processing; FPU: floating-point unit; SIMD: single instruction/multiple data; EGPRS: enhanced General Packet Radio
Services; UMTS: Universal Mobile Telecommunications System; HSPA: high-speed packet access.
now being achieved primarily through
architectural innovations.
One continued trend is toward
increasing heterogeneity with application-specific central processing units
(CPUs), general-purpose graphics processing units (GPGPUs), and custom
accelerators. Thus, computation is moving from general-purpose CPUs to more
power-efficient cores in an effort to meet
performance demands within limited
power budgets. Core numbers and frequencies are not growing significantly,
but application-specific cores and accelerators represent a growing portion of
die area. Heterogeneous computing that
enables efficient collaboration between
cores is gaining in importance.
Short Links, 1 m
100G Ethernet
100 G
400G Ethernet
10G Ethernet
Data Rate (Hz)
10 G
802.15.3c
UWB
802.11n
USB 2.0
100 M
10 M
1M
802.11b
802.11ag
USB 1.0
802.11
802.11.ac/ad
LTE-A
LTE
5G
Cellular, 100 m
HSPA
HSDPA
WiMAX
3G R99/EDGE
100 K
10 K
USB 3.0
PCIxpress
1G
LAN, 10 m
802.11.ax
GSM
1995
GPRS
2000
2005
2010
2015
2020
Year
Figure 11: Application processor trends in smartphones. GSM: Global System for Mobile
Communications USB: Universal Serial Bus; HSDPA: High Speed Downlink Packet Access.
18
w i n t e r 2 0 17
IEEE SOLID-STATE CIRCUITS MAGAZINE
Figure 10 shows some application processor feature trends for smartphones. These CPUs are now running
up to 2.8 GHz, approaching laptop
and desktop CPU performance levels. Single-thread performance is
improved by microarchitectural improvements and multithread performance by adding more cores and
more efficiently managing differently
optimized cores. Virtual reality (VR) is
one of the key drivers of the demand
for the evolution of GPUs, displays,
and cameras. Small CPU subsystems
are being added for I/O and sensorhub control to ensure low-power, always-on functionality.
Wired and wireless links continue
to increase in bandwidth. As illustrated in Figure 11, a consistent tentimes increase in data rate is seen
every five years. The IoE revolution
is bringing an explosion of demand
for network bandwidth: everything
will be connected through wired
and wireless networks, generating a
tremendous amount data to be processed/analyzed in the cloud. Correspondingly, IEEE 802.3 400 Gb/s
is being developed, and the LTE
advanced (LTE-A) standard is extending to 1.6-Gb/s bandwidth; 5G is
targeting 10-100 Gb/s, comparable
Table of Contents for the Digital Edition of IEEE Solid-State Circuits Magazine - Winter 2017
IEEE Solid-State Circuits Magazine - Winter 2017 - Cover1
IEEE Solid-State Circuits Magazine - Winter 2017 - Cover2
IEEE Solid-State Circuits Magazine - Winter 2017 - 1
IEEE Solid-State Circuits Magazine - Winter 2017 - 2
IEEE Solid-State Circuits Magazine - Winter 2017 - 3
IEEE Solid-State Circuits Magazine - Winter 2017 - 4
IEEE Solid-State Circuits Magazine - Winter 2017 - 5
IEEE Solid-State Circuits Magazine - Winter 2017 - 6
IEEE Solid-State Circuits Magazine - Winter 2017 - 7
IEEE Solid-State Circuits Magazine - Winter 2017 - 8
IEEE Solid-State Circuits Magazine - Winter 2017 - 9
IEEE Solid-State Circuits Magazine - Winter 2017 - 10
IEEE Solid-State Circuits Magazine - Winter 2017 - 11
IEEE Solid-State Circuits Magazine - Winter 2017 - 12
IEEE Solid-State Circuits Magazine - Winter 2017 - 13
IEEE Solid-State Circuits Magazine - Winter 2017 - 14
IEEE Solid-State Circuits Magazine - Winter 2017 - 15
IEEE Solid-State Circuits Magazine - Winter 2017 - 16
IEEE Solid-State Circuits Magazine - Winter 2017 - 17
IEEE Solid-State Circuits Magazine - Winter 2017 - 18
IEEE Solid-State Circuits Magazine - Winter 2017 - 19
IEEE Solid-State Circuits Magazine - Winter 2017 - 20
IEEE Solid-State Circuits Magazine - Winter 2017 - 21
IEEE Solid-State Circuits Magazine - Winter 2017 - 22
IEEE Solid-State Circuits Magazine - Winter 2017 - 23
IEEE Solid-State Circuits Magazine - Winter 2017 - 24
IEEE Solid-State Circuits Magazine - Winter 2017 - 25
IEEE Solid-State Circuits Magazine - Winter 2017 - 26
IEEE Solid-State Circuits Magazine - Winter 2017 - 27
IEEE Solid-State Circuits Magazine - Winter 2017 - 28
IEEE Solid-State Circuits Magazine - Winter 2017 - 29
IEEE Solid-State Circuits Magazine - Winter 2017 - 30
IEEE Solid-State Circuits Magazine - Winter 2017 - 31
IEEE Solid-State Circuits Magazine - Winter 2017 - 32
IEEE Solid-State Circuits Magazine - Winter 2017 - 33
IEEE Solid-State Circuits Magazine - Winter 2017 - 34
IEEE Solid-State Circuits Magazine - Winter 2017 - 35
IEEE Solid-State Circuits Magazine - Winter 2017 - 36
IEEE Solid-State Circuits Magazine - Winter 2017 - 37
IEEE Solid-State Circuits Magazine - Winter 2017 - 38
IEEE Solid-State Circuits Magazine - Winter 2017 - 39
IEEE Solid-State Circuits Magazine - Winter 2017 - 40
IEEE Solid-State Circuits Magazine - Winter 2017 - 41
IEEE Solid-State Circuits Magazine - Winter 2017 - 42
IEEE Solid-State Circuits Magazine - Winter 2017 - 43
IEEE Solid-State Circuits Magazine - Winter 2017 - 44
IEEE Solid-State Circuits Magazine - Winter 2017 - 45
IEEE Solid-State Circuits Magazine - Winter 2017 - 46
IEEE Solid-State Circuits Magazine - Winter 2017 - 47
IEEE Solid-State Circuits Magazine - Winter 2017 - 48
IEEE Solid-State Circuits Magazine - Winter 2017 - 49
IEEE Solid-State Circuits Magazine - Winter 2017 - 50
IEEE Solid-State Circuits Magazine - Winter 2017 - 51
IEEE Solid-State Circuits Magazine - Winter 2017 - 52
IEEE Solid-State Circuits Magazine - Winter 2017 - 53
IEEE Solid-State Circuits Magazine - Winter 2017 - 54
IEEE Solid-State Circuits Magazine - Winter 2017 - 55
IEEE Solid-State Circuits Magazine - Winter 2017 - 56
IEEE Solid-State Circuits Magazine - Winter 2017 - 57
IEEE Solid-State Circuits Magazine - Winter 2017 - 58
IEEE Solid-State Circuits Magazine - Winter 2017 - 59
IEEE Solid-State Circuits Magazine - Winter 2017 - 60
IEEE Solid-State Circuits Magazine - Winter 2017 - 61
IEEE Solid-State Circuits Magazine - Winter 2017 - 62
IEEE Solid-State Circuits Magazine - Winter 2017 - 63
IEEE Solid-State Circuits Magazine - Winter 2017 - 64
IEEE Solid-State Circuits Magazine - Winter 2017 - 65
IEEE Solid-State Circuits Magazine - Winter 2017 - 66
IEEE Solid-State Circuits Magazine - Winter 2017 - 67
IEEE Solid-State Circuits Magazine - Winter 2017 - 68
IEEE Solid-State Circuits Magazine - Winter 2017 - Cover3
IEEE Solid-State Circuits Magazine - Winter 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com