Assay and Drug Development Technologies - 25
3D APPROACHES
23. Kunz-Schughart LA, Freyer PJ, Hofstaedter F, Enber R: The use of 3-D cultures
for high-throughput screening: the multicellular spheroid model. J Biomol
Screen 2004;9:273-285.
24. Breslin S, O'Driscoll L: Three-dimensional cell culture: the missing link in drug
discovery. Drug Disc Today 2013;18:240-248.
25. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD: 3D cell culture
systems: advantages and applications. J Cell Physiol 2015;230:16-26.
26. Denys H, Braems G, Lambein K, et al.: The extracellular matrix regulates cancer
progression and therapy response: implications for prognosis and treatment.
Curr Pharm Des 2009;15:1373-1384.
27. Pampaloni F, Reynaud EG, Stelzer EHK: The third dimension bridges the gap
between cell culture and live tissue. Nat Rev Mol Cell Biol 2007;8:839-845.
28. Antoni D, Burckel H, Josset E, Noel G: Three-dimensional cell culture: a
breakthrough in vivo. Int J Mol Sci 2015;16:5517-5527.
29. Montanez-Sauri SI, Sung KE, Berthier E, Beebe DJ: Enabling screening in 3D
microenvironments: probing matrix and stromal effects on the morphology and
proliferation of T47D breast carcinoma cells. Integr Biol (Camb) 2013;5:631-640.
30. Liu B, Li S, Hu J: Technological advances in high-throughput screening. Am J
Pharmacogenomics 2004;4:263-276.
31. Varma H, Lo DC, Stockwell BR: High-throughput and high-content screening
for Huntington's disease therapeutics. In: Neurobiology of Huntington's
Disease: Applications to Drug Discovery. Lo DC, Hughes RE (eds.). pp.121-146.
CRC Press, Boca Raton, FL, 2011.
32. Buchser W, Collins M, Garyantes T, et al.: Assay development guidelines for
image-based high content screening, high content analysis and high content
imaging. In: Assay Guidance Manual. Sittampalam GS, Coussens NP, Nelson H,
Arkin M, Auld D, Austin C, Bejcek B, Glicksman M, Inglese J, Iversen PW, Li Z,
McGee J, McManus O, Minor L, Napper A, Peltier JM, Riss T, Trask OJ Jr.,
Weidner J (eds.). Bethesda MD 2014.
33. Griffith LG, Swartz MA: Capturing complex 3D tissue physiology in vitro. Nat
Rev Mol Cell Biol 2006;7:211-224.
34. Przyborski S: 3D cell culture developments to improve in vitro analyses. Drug
Discovery World 2011.
35. Dufau I, Frongia C, Sicard F, et al.: Multicellular tumor spheroid model to
evaluate spatio-temporal dynamics effect of chemotherapeutics: application
to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC
Cancer 2012;12:15.
36. Zhong W-B, Hsu S-P, Ho P-Y, Liang Y-C, Chang T-C, Lee W-S: Lovastatin
inhibits proliferation of anaplastic thyroid cancer cells through up-regulation
of p27 by interfering with the Rho/ROCK-mediated pathway. Biochem
Pharmacol 2011;82:1663-1672.
37. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011;
144:646-674.
38. Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1
inhibitors as cancer therapeutics. Trends Mol Med 2011;17:88-96.
39. Zhang S, Zhao X, Spirio L: PuraMatrix: self-assembling peptide nanofiber
scaffolds. In: Scaffolding in Tissue Engineering. Ma PX, Elisseeff J (eds.), pp.
217-238. CRC Press, Boca Roaton, FL, 2005.
40. Frantz C, Stewart KM, Weaver VM: The extracellular matrix at a glance. J Cell
Sci 2010;123:4195-4200.
41. Gilkes DM, Semenza GL, Wirtz D: Hypoxia and the extracellular matrix: drivers
of tumour metastasis. Nat Rev Cancer 2014;14:430-439.
42. Cox TR, Erler JT: Remodeling and homeostasis of the extracellular matrix:
implications for fibrotic diseases and cancer. Dis Model Mech 2011;4:165-178.
43. Lu P, Weaver VM, Werb Z: The extracellular matrix: a dynamic niche in cancer
progression. J Cell Biol 2012;196:395-406.
44. Baker BM, Chen CS: Deconstructing the third dimension: how 3D culture
microenvironments alter cellular cues. J Cell Sci 2012;125:3015-3024.
45. Venugopalan G, Camarillo DB, Webster KD, et al.: Multicellular architecture
of malignant breast epithelia influences mechanics. PLoS One 2014;9:
e101955.
46. Friedl P, Sahai E, Weiss S, Yamada KM: New dimensions in cell migration. Nat
Rev Mol Cell Biol 2012;13:743-747.
47. Weaver VM, Lelie`vre S, Lakins JN, et al.: Beta4 integrin-dependent
formation of polarized three-dimensional architecture confers resistance
to apoptosis in normal and malignant mammary epithelium. Cancer Cell
2002;2:205-216.
48. Acker H, Carlsson J, Mueller-Klieser W, Sutherland RM: Comparative pO2
measurements in cell spheroids cultured with different techniques. Br J
Cancer 1987;56:325-327.
49. Carlsson J, Acker H: Relations between pH, oxygen partial pressure and growth
in cultured cell spheroids. Int J Cancer 1988;42:715-720.
50. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, KunzSchughart
LA: Multicellular tumor spheroids: an underestimated tool is
catching up again. J Biotechnol 2010;148:3-15.
51. Friedrich J, Ebner R, Kunz-Schughart LA: Experimental anti-tumor therapy in
3-D: spheroids-old hat or new challenge? Int J Radiat Biol 2007;83:849-871.
52. Mueller-Klieser W: Tumor biology and experimental therapeutics. Crit Rev
Oncol Hematol 2000;36:123-139.
53. Keller P, Schmidt AD, Wittbrodt J, Stelzer EH: Reconstruction of zebrafish early
embryonic development by scanned light sheet microscopy. Science 2008;322:
1065-1069.
54. Liu C, Dube´ PE, Girish N, Reddy AT, Polk DB: Optical reconstruction of murine
colorectal mucosa at cellular resolution. Am J Physiol Gastrointest Liver
Physiol 2015;308:G721-G735.
55. Ke M, Fujimoto S, Imai T: See DB: a simple and morphology-preserving optical
clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013;16:
1154-1161.
56. van de Wetering M, Francies HE, Francis JM, et al.: Prospective derivation of a
living organoid biobank of colorectal cancer patients. Cell 2015;161:933-945.
57. Shamir ER, Ewald AJ: Three-dimensional organotypic culture: experimental models
of mammalian biology and disease. Nat RevMol Cell Biol 2014;15:647-664.
58. Sachs N, Clevers H: Organoid cultures for the analysis of cancer phenotypes.
Curr Opin Genet Dev 2014;24:68-73.
59. Aparicio S, Hidalgo M, Kung AL: Examining the utility of patient-derived
xenograft mouse models. Nat Rev Cancer 2015;15:311-316.
60. Cassidy JW, Caldas C, Bruna A: Maintaining tumor heterogeneity in patientderived
tumor xenografts. Cancer Res 2015;75:2963-2968.
61. Ma MY, Hsiung LC, Wang CH, et al.: A novel 96 well-formatted micro-gap
plate enabling drug response profiling on primary tumour samples. Sci Rep
2015;5:9656.
62. Imamura Y, Mukohara T, Shimono Y, et al.: Comparison of 2D- and 3D-culture
models as drug-testing platforms in breast cancer. Oncol Rep 2015;33:1837-
1843.
63. Pageau S, Sazonova OV, Wong JY, Soto AM, Sonnenschein C: The effect of
stromal components on the modulation of the phenotype of human bronchial
epithelial cells in 3D culture. Biomaterials 2011;32:7169-7180.
64. WangX, Sun L,MaffiniMV,SotoA,SonnenscheinC,KaplanDL: Acomplex 3Dhuman
tissue culturesystembasedonmammary stromal cells andsilk scaffolds for modeling
breast morphogenesis and function. Biomaterials 2010;31:3920-3929.
65. Tetko IV, Bruneau P, Mewes HW, Rohrer DC, Poda GI: Can we estimate the
accuracy of ADME-Tox predictions? Drug Discov Today 2006;11:700-707.
66. Li AP: Screening for human ADME/Tox drug properties in drug discovery. Drug
Discov Today 2001;6:357-366.
67. Chun Y: Three dimensional in vitro human tissue models for ADME-Tox
studies. Drug Metab Pharmacokinet 2014;29:431-432.
68. Godoy P, Hewitt NJ, Albrecht U, et al.: Recent advances in 2D and 3D in vitro
systems using primary hepatocytes, alternative hepatocyte sources and nonparenchymal
liver cells and their use in investigating mechanisms of
hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013;87:1315-1530.
69. Ghosh S, Spagnoli GC, Martin I, et al.: Three-dimensional culture of melanoma
cells profoundly affects gene expression profile: a high density oligonucleotide
array study. J Cell Physiol 2005;204:522-531.
70. Knuechel R, Siebert-Wellnhofer A, Traub O, Dermietzel R: Connexin expression
and intercellular communication in two- and three-dimensional in vitro
cultures of human bladder carcinoma. Am J Pathol 1996;149:1321-1332.
ª 2022 MARY ANN LIEBERT, INC. ASSAY and Drug Development Technologies 25
Assay and Drug Development Technologies
Table of Contents for the Digital Edition of Assay and Drug Development Technologies
Contents
Assay and Drug Development Technologies - Cover1
Assay and Drug Development Technologies - Cover2
Assay and Drug Development Technologies - Contents
Assay and Drug Development Technologies - ii
Assay and Drug Development Technologies - 1
Assay and Drug Development Technologies - 2
Assay and Drug Development Technologies - 3
Assay and Drug Development Technologies - 4
Assay and Drug Development Technologies - 5
Assay and Drug Development Technologies - 6
Assay and Drug Development Technologies - 7
Assay and Drug Development Technologies - 8
Assay and Drug Development Technologies - 9
Assay and Drug Development Technologies - 10
Assay and Drug Development Technologies - 11
Assay and Drug Development Technologies - 12
Assay and Drug Development Technologies - 13
Assay and Drug Development Technologies - 14
Assay and Drug Development Technologies - 15
Assay and Drug Development Technologies - 16
Assay and Drug Development Technologies - 17
Assay and Drug Development Technologies - 18
Assay and Drug Development Technologies - 19
Assay and Drug Development Technologies - 20
Assay and Drug Development Technologies - 21
Assay and Drug Development Technologies - 22
Assay and Drug Development Technologies - 23
Assay and Drug Development Technologies - 24
Assay and Drug Development Technologies - 25
Assay and Drug Development Technologies - 26
Assay and Drug Development Technologies - 27
Assay and Drug Development Technologies - 28
Assay and Drug Development Technologies - 29
Assay and Drug Development Technologies - 30
Assay and Drug Development Technologies - Cover3
Assay and Drug Development Technologies - Cover4
https://www.nxtbookmedia.com