IEEE Electrification Magazine - December 2016 - 28

The dSO and Te System
design for the Provision
of Grid Services from
Grid-edge devices

A new DSO
construct has
emerged in recent
years as the venue
to facilitate the
participation of
demand-side assets
in bulk power
system and
wholesale markets.

The new DSO construct in some jurisdictions, such as New York, is considered to encourage active demand-side
participation; in other jurisdictions,
such as California and Hawaii, it is to
help the distribution operator facing
proliferation of DR/DERs. In either
case, the DSO construct and the
emerging TE systems enhance opportunities for buildings, microgrids, and
grid-edge devices to leverage their DR/
DER flexibility to the mutual benefit of
themselves and the grid operators. To
accomplish this objective, the DSO
needs tools to cost-effectively manage
DR/DER and transactive retail market facilitation, where
allowed by regulatory provisions. Figure 6 shows the main
functions the DSO must provide.

Illustrative Example
We briefly describe the Open Access Technology International (OATI) South Campus facility and its capability
to provide grid services to illustrate the opportunities
for smart buildings and microgrids provided by the
emerging paradigm (Figure 7). The OATI South Campus
is a commercial office building housing a data center
and business offices. The facility is designed as a
microgrid with dispatchable generation, including
microturbines in a combined heat and power configuration, diesel generator, solar photovoltaics, small wind,

electric vehicle (EV) charging, and
battery storage, as well as building
energy management and automation systems providing DR capabilities. The building is also equipped
with a master controller, OATI GridMind, to coordinate and economically optimize the operation of these
assets based on the building needs,
renewable generation forecasts, and
energy market opportunities.
While minimizing the building's
net energy cost, GridMind provides
for load shifting and load shaping,
generation and storage scheduling,
and dispatch, not only to meet the
data center and building's operational
needs, but also to take advantage of
market opportunities for grid services. These services include
xx
fast frequency response services through local

measurement of the grid frequency and autonomous control of certain load, EV charging, and storage assets
xx
regulation services through storage and generation
assets and variable speed motors
xx
spinning and nonspinning/supplemental reserves
through scheduling and dispatch of generation, load,
and, available thermal and electrical storage
xx
capacity to meet resource adequacy requirements
using the available aggregate capacity considering
forecasted building needs.
In addition to cooptimizing and scheduling these
services, the GridMind master controller contains

Bulk Power Markets
DSO Platform

ESPs
Aggregators
DER Provider
Prosumers
Microgrids

Participant Interfaces
Transactive Operations

Registration and Qualification
Market Interfaces

Forecasting

Economic
Optimization
Scheduling and Dispatch
VPP Management

Distribution
Constraint
Management

Master Data Management
Performance Monitoring
and Settlements

Data Acquisition and Control

DR Assets

DER Assets MG Assets

Figure 6. The main DSO platform functions.

28

I E E E E l e c t r i f i c ati o n M agaz ine / december 2016

Utility
Operations
Interfaces

Telemetry

Metering

Distribution Operations
Customer Services



Table of Contents for the Digital Edition of IEEE Electrification Magazine - December 2016

IEEE Electrification Magazine - December 2016 - Cover1
IEEE Electrification Magazine - December 2016 - Cover2
IEEE Electrification Magazine - December 2016 - 1
IEEE Electrification Magazine - December 2016 - 2
IEEE Electrification Magazine - December 2016 - 3
IEEE Electrification Magazine - December 2016 - 4
IEEE Electrification Magazine - December 2016 - 5
IEEE Electrification Magazine - December 2016 - 6
IEEE Electrification Magazine - December 2016 - 7
IEEE Electrification Magazine - December 2016 - 8
IEEE Electrification Magazine - December 2016 - 9
IEEE Electrification Magazine - December 2016 - 10
IEEE Electrification Magazine - December 2016 - 11
IEEE Electrification Magazine - December 2016 - 12
IEEE Electrification Magazine - December 2016 - 13
IEEE Electrification Magazine - December 2016 - 14
IEEE Electrification Magazine - December 2016 - 15
IEEE Electrification Magazine - December 2016 - 16
IEEE Electrification Magazine - December 2016 - 17
IEEE Electrification Magazine - December 2016 - 18
IEEE Electrification Magazine - December 2016 - 19
IEEE Electrification Magazine - December 2016 - 20
IEEE Electrification Magazine - December 2016 - 21
IEEE Electrification Magazine - December 2016 - 22
IEEE Electrification Magazine - December 2016 - 23
IEEE Electrification Magazine - December 2016 - 24
IEEE Electrification Magazine - December 2016 - 25
IEEE Electrification Magazine - December 2016 - 26
IEEE Electrification Magazine - December 2016 - 27
IEEE Electrification Magazine - December 2016 - 28
IEEE Electrification Magazine - December 2016 - 29
IEEE Electrification Magazine - December 2016 - 30
IEEE Electrification Magazine - December 2016 - 31
IEEE Electrification Magazine - December 2016 - 32
IEEE Electrification Magazine - December 2016 - 33
IEEE Electrification Magazine - December 2016 - 34
IEEE Electrification Magazine - December 2016 - 35
IEEE Electrification Magazine - December 2016 - 36
IEEE Electrification Magazine - December 2016 - 37
IEEE Electrification Magazine - December 2016 - 38
IEEE Electrification Magazine - December 2016 - 39
IEEE Electrification Magazine - December 2016 - 40
IEEE Electrification Magazine - December 2016 - 41
IEEE Electrification Magazine - December 2016 - 42
IEEE Electrification Magazine - December 2016 - 43
IEEE Electrification Magazine - December 2016 - 44
IEEE Electrification Magazine - December 2016 - 45
IEEE Electrification Magazine - December 2016 - 46
IEEE Electrification Magazine - December 2016 - 47
IEEE Electrification Magazine - December 2016 - 48
IEEE Electrification Magazine - December 2016 - 49
IEEE Electrification Magazine - December 2016 - 50
IEEE Electrification Magazine - December 2016 - 51
IEEE Electrification Magazine - December 2016 - 52
IEEE Electrification Magazine - December 2016 - Cover3
IEEE Electrification Magazine - December 2016 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com