IEEE Electrification Magazine - June 2014 - 51
image courtesy of freeimages.com/duchesssa
replacing the mechanical and pneumatic systems with electrical systems, thus transitioning toward more electric architectures. More Electric Aircraft (MEA) architectures are the
solution to meeting the above challenges in aircraft systems.
Passenger aircraft, such as the Boeing 787 and Airbus 380
(A380), are employing a number of these new electrical technologies including bleedless environmental control systems
(in the 787). These loads are creating a substantial increase in
the total electrical power drawn from the aircraft engine-driven generators.
In conventional automobiles, the legacy loads are powered by the 12-V battery, which is charged by the alternator
driven by an internal combustion engine. In electric vehicles (EVs)/hybrid electric vehicles (HEVs), the 12 Vdc for
electrical loads is derived from the propulsion battery
using a dc/dc converter that converts battery voltage to
12 Vdc. In an MEA, the required thrust for propulsion is still
provided by the engines and the electric power is derived
from the generators driven by the engines. Hence, the jet
engine is optimized to produce the thrust and the electric
power. The electric starting of the engine and the conversion of all of the pneumatic and hydraulic units on the
accessory gearbox to an electric system are also being
investigated. Table 1 shows the power generation capability in various aircraft. Commercial and many military aircraft are equipped with an auxiliary power unit (APU),
which is essentially a relatively small jet engine-driven
generator that can be used as an additional power source.
To power all of the electrical loads in EVs/HEVs and
MEAs, high-efficiency power electronics and electric
machines are required to support new architectures and
enable system changes to reach the objectives of achieving lower emissions with reduced weight and volume.
There is a great deal of similarity between the EV/HEV and
MEA technologies, particularly in the area of power electronics systems, including electric machines. Common
components include lightweight high-voltage batteries,
power controllers, electric motors, controllers, and integrated generators. In addition, certain components, such
as capacitors, diodes, inductors, solid-state power devices,
thermal management systems, and advanced power and
control circuit topologies, are essential to both systems.
The common goal for both MEA and EV/HEV systems
is to have reliable, high-efficiency, low-cost, and
IEEE Electrific ation Magazine / j une 2 0 1 4
51
http://www.freeimages.com/duchesssa
Table of Contents for the Digital Edition of IEEE Electrification Magazine - June 2014
IEEE Electrification Magazine - June 2014 - Cover1
IEEE Electrification Magazine - June 2014 - Cover2
IEEE Electrification Magazine - June 2014 - 1
IEEE Electrification Magazine - June 2014 - 2
IEEE Electrification Magazine - June 2014 - 3
IEEE Electrification Magazine - June 2014 - 4
IEEE Electrification Magazine - June 2014 - 5
IEEE Electrification Magazine - June 2014 - 6
IEEE Electrification Magazine - June 2014 - 7
IEEE Electrification Magazine - June 2014 - 8
IEEE Electrification Magazine - June 2014 - 9
IEEE Electrification Magazine - June 2014 - 10
IEEE Electrification Magazine - June 2014 - 11
IEEE Electrification Magazine - June 2014 - 12
IEEE Electrification Magazine - June 2014 - 13
IEEE Electrification Magazine - June 2014 - 14
IEEE Electrification Magazine - June 2014 - 15
IEEE Electrification Magazine - June 2014 - 16
IEEE Electrification Magazine - June 2014 - 17
IEEE Electrification Magazine - June 2014 - 18
IEEE Electrification Magazine - June 2014 - 19
IEEE Electrification Magazine - June 2014 - 20
IEEE Electrification Magazine - June 2014 - 21
IEEE Electrification Magazine - June 2014 - 22
IEEE Electrification Magazine - June 2014 - 23
IEEE Electrification Magazine - June 2014 - 24
IEEE Electrification Magazine - June 2014 - 25
IEEE Electrification Magazine - June 2014 - 26
IEEE Electrification Magazine - June 2014 - 27
IEEE Electrification Magazine - June 2014 - 28
IEEE Electrification Magazine - June 2014 - 29
IEEE Electrification Magazine - June 2014 - 30
IEEE Electrification Magazine - June 2014 - 31
IEEE Electrification Magazine - June 2014 - 32
IEEE Electrification Magazine - June 2014 - 33
IEEE Electrification Magazine - June 2014 - 34
IEEE Electrification Magazine - June 2014 - 35
IEEE Electrification Magazine - June 2014 - 36
IEEE Electrification Magazine - June 2014 - 37
IEEE Electrification Magazine - June 2014 - 38
IEEE Electrification Magazine - June 2014 - 39
IEEE Electrification Magazine - June 2014 - 40
IEEE Electrification Magazine - June 2014 - 41
IEEE Electrification Magazine - June 2014 - 42
IEEE Electrification Magazine - June 2014 - 43
IEEE Electrification Magazine - June 2014 - 44
IEEE Electrification Magazine - June 2014 - 45
IEEE Electrification Magazine - June 2014 - 46
IEEE Electrification Magazine - June 2014 - 47
IEEE Electrification Magazine - June 2014 - 48
IEEE Electrification Magazine - June 2014 - 49
IEEE Electrification Magazine - June 2014 - 50
IEEE Electrification Magazine - June 2014 - 51
IEEE Electrification Magazine - June 2014 - 52
IEEE Electrification Magazine - June 2014 - 53
IEEE Electrification Magazine - June 2014 - 54
IEEE Electrification Magazine - June 2014 - 55
IEEE Electrification Magazine - June 2014 - 56
IEEE Electrification Magazine - June 2014 - 57
IEEE Electrification Magazine - June 2014 - 58
IEEE Electrification Magazine - June 2014 - 59
IEEE Electrification Magazine - June 2014 - 60
IEEE Electrification Magazine - June 2014 - 61
IEEE Electrification Magazine - June 2014 - 62
IEEE Electrification Magazine - June 2014 - 63
IEEE Electrification Magazine - June 2014 - 64
IEEE Electrification Magazine - June 2014 - 65
IEEE Electrification Magazine - June 2014 - 66
IEEE Electrification Magazine - June 2014 - 67
IEEE Electrification Magazine - June 2014 - 68
IEEE Electrification Magazine - June 2014 - 69
IEEE Electrification Magazine - June 2014 - 70
IEEE Electrification Magazine - June 2014 - 71
IEEE Electrification Magazine - June 2014 - 72
IEEE Electrification Magazine - June 2014 - 73
IEEE Electrification Magazine - June 2014 - 74
IEEE Electrification Magazine - June 2014 - 75
IEEE Electrification Magazine - June 2014 - 76
IEEE Electrification Magazine - June 2014 - 77
IEEE Electrification Magazine - June 2014 - 78
IEEE Electrification Magazine - June 2014 - 79
IEEE Electrification Magazine - June 2014 - 80
IEEE Electrification Magazine - June 2014 - Cover3
IEEE Electrification Magazine - June 2014 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com