IEEE Electrification Magazine - June 2017 - 31

Figure 1. PVs installed in the Project 1 microgrid.

Figure 3. PVs installed in the Project 2 microgrid.

Figure 2. Batteries installed in the Project 1 microgrid.

Figure 4. Wind units installed in the Project 2 microgrid.

Method for Renewable energy and energy
Storage Capacity Configuration

5) The capacity of the energy storage can guarantee
the power supply for important loads in the isolated microgrid for a period under extreme conditions.
Taking a large-scale isolated microgrid in southern
China as an example, the total load of this isolated system
is 9 MW, which was supplied by four 2.2-MW diesel generators in the past. Now PVs and energy storage will be used
to replace the diesel generators. The load level of this
microgrid, including the total load and the important load,
will determine the capacity configuration of PVs and
energy storage.
On the basis of the preceding principles, energy storage
capacity should be enough to ensure the reliable power
supply for the important load under extreme conditions,
and the renewable energy resource should be used as
much as possible to replace the diesel generators. During

In a large-scale isolated microgrid, to determine the capacities of renewable energy generation and energy storage, the following principles are usually adopted.
1) In general, the total capacity of distributed renewable
energy generation should follow the principle of local
generation-local consumption.
2) Energy storage will be used to smooth the power fluctuation caused by renewable energy generation and improve
the utilization efficiency of renewable energy resources.
3) To enhance the stability of the microgrid, energy storage can also be used to absorb the system fluctuations
caused by a sudden large load change.
4) Energy storage can transfer the energy of renewable
energy generation.

Table 2. a comparison of energy storage characteristics.
Type

Lead-Acid
Battery

Lithium Iron
Phosphate Battery

Flow
Battery

Lead Carbon
Battery

Price

Low

High

Highest

Fair

Reliability

Better

Good

Fair

Better

Environmental protection

Poor

Good

Poor

Fair

Safety

Good

Fair

Better

Better

Transport and maintenance

Convenient

Fair

Inconvenient

Convenient

Charge and discharge capacity

Bad

Good

Poor

Fair

Cycles

Bad

Good

Best

Better

Response time

Fair

Fastest

Slow

Fast

	

IEEE Electrific ation Magazine / j une 2 0 1 7

31



Table of Contents for the Digital Edition of IEEE Electrification Magazine - June 2017

IEEE Electrification Magazine - June 2017 - Cover1
IEEE Electrification Magazine - June 2017 - Cover2
IEEE Electrification Magazine - June 2017 - 1
IEEE Electrification Magazine - June 2017 - 2
IEEE Electrification Magazine - June 2017 - 3
IEEE Electrification Magazine - June 2017 - 4
IEEE Electrification Magazine - June 2017 - 5
IEEE Electrification Magazine - June 2017 - 6
IEEE Electrification Magazine - June 2017 - 7
IEEE Electrification Magazine - June 2017 - 8
IEEE Electrification Magazine - June 2017 - 9
IEEE Electrification Magazine - June 2017 - 10
IEEE Electrification Magazine - June 2017 - 11
IEEE Electrification Magazine - June 2017 - 12
IEEE Electrification Magazine - June 2017 - 13
IEEE Electrification Magazine - June 2017 - 14
IEEE Electrification Magazine - June 2017 - 15
IEEE Electrification Magazine - June 2017 - 16
IEEE Electrification Magazine - June 2017 - 17
IEEE Electrification Magazine - June 2017 - 18
IEEE Electrification Magazine - June 2017 - 19
IEEE Electrification Magazine - June 2017 - 20
IEEE Electrification Magazine - June 2017 - 21
IEEE Electrification Magazine - June 2017 - 22
IEEE Electrification Magazine - June 2017 - 23
IEEE Electrification Magazine - June 2017 - 24
IEEE Electrification Magazine - June 2017 - 25
IEEE Electrification Magazine - June 2017 - 26
IEEE Electrification Magazine - June 2017 - 27
IEEE Electrification Magazine - June 2017 - 28
IEEE Electrification Magazine - June 2017 - 29
IEEE Electrification Magazine - June 2017 - 30
IEEE Electrification Magazine - June 2017 - 31
IEEE Electrification Magazine - June 2017 - 32
IEEE Electrification Magazine - June 2017 - 33
IEEE Electrification Magazine - June 2017 - 34
IEEE Electrification Magazine - June 2017 - 35
IEEE Electrification Magazine - June 2017 - 36
IEEE Electrification Magazine - June 2017 - 37
IEEE Electrification Magazine - June 2017 - 38
IEEE Electrification Magazine - June 2017 - 39
IEEE Electrification Magazine - June 2017 - 40
IEEE Electrification Magazine - June 2017 - 41
IEEE Electrification Magazine - June 2017 - 42
IEEE Electrification Magazine - June 2017 - 43
IEEE Electrification Magazine - June 2017 - 44
IEEE Electrification Magazine - June 2017 - 45
IEEE Electrification Magazine - June 2017 - 46
IEEE Electrification Magazine - June 2017 - 47
IEEE Electrification Magazine - June 2017 - 48
IEEE Electrification Magazine - June 2017 - 49
IEEE Electrification Magazine - June 2017 - 50
IEEE Electrification Magazine - June 2017 - 51
IEEE Electrification Magazine - June 2017 - 52
IEEE Electrification Magazine - June 2017 - 53
IEEE Electrification Magazine - June 2017 - 54
IEEE Electrification Magazine - June 2017 - 55
IEEE Electrification Magazine - June 2017 - 56
IEEE Electrification Magazine - June 2017 - 57
IEEE Electrification Magazine - June 2017 - 58
IEEE Electrification Magazine - June 2017 - 59
IEEE Electrification Magazine - June 2017 - 60
IEEE Electrification Magazine - June 2017 - 61
IEEE Electrification Magazine - June 2017 - 62
IEEE Electrification Magazine - June 2017 - 63
IEEE Electrification Magazine - June 2017 - 64
IEEE Electrification Magazine - June 2017 - 65
IEEE Electrification Magazine - June 2017 - 66
IEEE Electrification Magazine - June 2017 - 67
IEEE Electrification Magazine - June 2017 - 68
IEEE Electrification Magazine - June 2017 - 69
IEEE Electrification Magazine - June 2017 - 70
IEEE Electrification Magazine - June 2017 - 71
IEEE Electrification Magazine - June 2017 - 72
IEEE Electrification Magazine - June 2017 - 73
IEEE Electrification Magazine - June 2017 - 74
IEEE Electrification Magazine - June 2017 - 75
IEEE Electrification Magazine - June 2017 - 76
IEEE Electrification Magazine - June 2017 - 77
IEEE Electrification Magazine - June 2017 - 78
IEEE Electrification Magazine - June 2017 - 79
IEEE Electrification Magazine - June 2017 - 80
IEEE Electrification Magazine - June 2017 - 81
IEEE Electrification Magazine - June 2017 - 82
IEEE Electrification Magazine - June 2017 - 83
IEEE Electrification Magazine - June 2017 - 84
IEEE Electrification Magazine - June 2017 - 85
IEEE Electrification Magazine - June 2017 - 86
IEEE Electrification Magazine - June 2017 - 87
IEEE Electrification Magazine - June 2017 - 88
IEEE Electrification Magazine - June 2017 - Cover3
IEEE Electrification Magazine - June 2017 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com