IEEE Electrification Magazine - June 2017 - 70

Data Hub
Control Hub
Weather Hub

TSO
Balance
Responsible Party

DSO
SCADA DMS

Market
Operator
Platform

Energy Retailer

IED

DR

DG

CIS

Substation Automation
RTU

Commercial
Aggregator
Systems

IED

MDMS NIS

Enterprise Service Bus

Commercial Aggregator

DER Automation

NIS

Secondary
Substation
Automation
DER Automation

Weather
Data

IED

IED

DR

DG

RTU
Smart
Meters

IED

IED

PMU
Secondary
Substation
Automation
PMU

PQ

IED

Smart
Meters

Figure 7. An overview of the IDE4L automation solution. (Image courtesy of S. Repo 2016.)

operation and the dynamic process of power systems. It
has analog and digital interfaces to interact with external
control systems directly or real hardware through amplifiers indirectly. It also has communication capability with a
supervisory control and data acquisition (SCADA) system
through Distributed Network Protocol 3 or International
Electrotechnical Commission 60870-5-104 protocols. It
provides a perfect environment to test new technologies
in a realistic way without real power systems.
The ICL at the DTU Lyngby campus consists of an RTDS
with ten racks, a full-scale ABB SCADA system, and a fullscale experimental power system control room. The RTDS
can simulate a power system with up to 480 buses. The
combination of the RTDS, SCADA system, and the fullscale control room creates an interactive environment for
simulating real power system operation and control. The
setup of the ICL is illustrated in Figure 8.

SYSLAB
The SYSLAB origin is with the former Danish National Laboratory for Renewable Energy, now part of DTU and PowerLabDK. It was born out of wind energy research, for
investigating the control and operation of isolated grids
based on renewable energy with wind turbines. A conventional diesel generator can balance the fluctuating wind
production as well as demand, such that the wind turbine
contributes directly to saving diesel fuel. As a research
facility, predecessors of SYSLAB supported the development and evaluation of improved control strategies to
increase the possible wind penetration (Figure 9). Such
wind-diesel systems have proven commercially successful
with several Danish companies offering wind-diesel solutions to date (e.g., DANVEST, http://www.danvest.com).

70

I E E E E l e c t r i f i c ati o n M agaz ine / j un e 2017

To date, increasingly flexible diesel generators enable
up to 70% of wind energy contributions, thus the commercial viability of wind-diesel off-grid solutions remains
compelling (DANVEST, http://www.danvest.com). These
solutions typically utilize the diesel generators as only a
controllable resource, with the control built on a singlevendor coordination of the diesel generators, and using
established control principles such as (frequency/voltage)
droop control and fixed supervisory control strategies for
coordination of multiple diesels. However, there are limitations to the scalability of pure wind-diesel system operation. Such systems are built on a principle of replication of
operational controllers to similar components. In such a
configuration, all relevant behaviors are encapsulated by a
proven controller, and all relevant system configurations
can be enumerated.
On the contrary, such supervisory controllers cannot
simply replicate their control strategy to accommodate
other types of resources, such as flexibility from the
demand side. This was clear in 2005, and with the aim of
facilitating research toward modular supervisory control,
SYSLAB was built as a research infrastructure that would
offer flexibility in terms of 1) the electrical system configurations, 2) flexible electricity resources (wind, solar, diesel,
battery, demand side), and 3) the enabling and interfacing
software platforms. SYSLAB allows for the testing of any
form of system configuration relevant to modularity of
supervisory control, both for off-grid systems and for gridconnected distribution systems.
Isolated and remote systems of the future must accommodate more-diverse resources and control behaviors if
the transition to fossil fuel-free energy supply is to be
achieved. Examples of more-diverse components include


http://www.danvest.com http://www.danvest.com

Table of Contents for the Digital Edition of IEEE Electrification Magazine - June 2017

IEEE Electrification Magazine - June 2017 - Cover1
IEEE Electrification Magazine - June 2017 - Cover2
IEEE Electrification Magazine - June 2017 - 1
IEEE Electrification Magazine - June 2017 - 2
IEEE Electrification Magazine - June 2017 - 3
IEEE Electrification Magazine - June 2017 - 4
IEEE Electrification Magazine - June 2017 - 5
IEEE Electrification Magazine - June 2017 - 6
IEEE Electrification Magazine - June 2017 - 7
IEEE Electrification Magazine - June 2017 - 8
IEEE Electrification Magazine - June 2017 - 9
IEEE Electrification Magazine - June 2017 - 10
IEEE Electrification Magazine - June 2017 - 11
IEEE Electrification Magazine - June 2017 - 12
IEEE Electrification Magazine - June 2017 - 13
IEEE Electrification Magazine - June 2017 - 14
IEEE Electrification Magazine - June 2017 - 15
IEEE Electrification Magazine - June 2017 - 16
IEEE Electrification Magazine - June 2017 - 17
IEEE Electrification Magazine - June 2017 - 18
IEEE Electrification Magazine - June 2017 - 19
IEEE Electrification Magazine - June 2017 - 20
IEEE Electrification Magazine - June 2017 - 21
IEEE Electrification Magazine - June 2017 - 22
IEEE Electrification Magazine - June 2017 - 23
IEEE Electrification Magazine - June 2017 - 24
IEEE Electrification Magazine - June 2017 - 25
IEEE Electrification Magazine - June 2017 - 26
IEEE Electrification Magazine - June 2017 - 27
IEEE Electrification Magazine - June 2017 - 28
IEEE Electrification Magazine - June 2017 - 29
IEEE Electrification Magazine - June 2017 - 30
IEEE Electrification Magazine - June 2017 - 31
IEEE Electrification Magazine - June 2017 - 32
IEEE Electrification Magazine - June 2017 - 33
IEEE Electrification Magazine - June 2017 - 34
IEEE Electrification Magazine - June 2017 - 35
IEEE Electrification Magazine - June 2017 - 36
IEEE Electrification Magazine - June 2017 - 37
IEEE Electrification Magazine - June 2017 - 38
IEEE Electrification Magazine - June 2017 - 39
IEEE Electrification Magazine - June 2017 - 40
IEEE Electrification Magazine - June 2017 - 41
IEEE Electrification Magazine - June 2017 - 42
IEEE Electrification Magazine - June 2017 - 43
IEEE Electrification Magazine - June 2017 - 44
IEEE Electrification Magazine - June 2017 - 45
IEEE Electrification Magazine - June 2017 - 46
IEEE Electrification Magazine - June 2017 - 47
IEEE Electrification Magazine - June 2017 - 48
IEEE Electrification Magazine - June 2017 - 49
IEEE Electrification Magazine - June 2017 - 50
IEEE Electrification Magazine - June 2017 - 51
IEEE Electrification Magazine - June 2017 - 52
IEEE Electrification Magazine - June 2017 - 53
IEEE Electrification Magazine - June 2017 - 54
IEEE Electrification Magazine - June 2017 - 55
IEEE Electrification Magazine - June 2017 - 56
IEEE Electrification Magazine - June 2017 - 57
IEEE Electrification Magazine - June 2017 - 58
IEEE Electrification Magazine - June 2017 - 59
IEEE Electrification Magazine - June 2017 - 60
IEEE Electrification Magazine - June 2017 - 61
IEEE Electrification Magazine - June 2017 - 62
IEEE Electrification Magazine - June 2017 - 63
IEEE Electrification Magazine - June 2017 - 64
IEEE Electrification Magazine - June 2017 - 65
IEEE Electrification Magazine - June 2017 - 66
IEEE Electrification Magazine - June 2017 - 67
IEEE Electrification Magazine - June 2017 - 68
IEEE Electrification Magazine - June 2017 - 69
IEEE Electrification Magazine - June 2017 - 70
IEEE Electrification Magazine - June 2017 - 71
IEEE Electrification Magazine - June 2017 - 72
IEEE Electrification Magazine - June 2017 - 73
IEEE Electrification Magazine - June 2017 - 74
IEEE Electrification Magazine - June 2017 - 75
IEEE Electrification Magazine - June 2017 - 76
IEEE Electrification Magazine - June 2017 - 77
IEEE Electrification Magazine - June 2017 - 78
IEEE Electrification Magazine - June 2017 - 79
IEEE Electrification Magazine - June 2017 - 80
IEEE Electrification Magazine - June 2017 - 81
IEEE Electrification Magazine - June 2017 - 82
IEEE Electrification Magazine - June 2017 - 83
IEEE Electrification Magazine - June 2017 - 84
IEEE Electrification Magazine - June 2017 - 85
IEEE Electrification Magazine - June 2017 - 86
IEEE Electrification Magazine - June 2017 - 87
IEEE Electrification Magazine - June 2017 - 88
IEEE Electrification Magazine - June 2017 - Cover3
IEEE Electrification Magazine - June 2017 - Cover4
https://www.nxtbook.com/nxtbooks/pes/electrification_december2022
https://www.nxtbook.com/nxtbooks/pes/electrification_september2022
https://www.nxtbook.com/nxtbooks/pes/electrification_june2022
https://www.nxtbook.com/nxtbooks/pes/electrification_march2022
https://www.nxtbook.com/nxtbooks/pes/electrification_december2021
https://www.nxtbook.com/nxtbooks/pes/electrification_september2021
https://www.nxtbook.com/nxtbooks/pes/electrification_june2021
https://www.nxtbook.com/nxtbooks/pes/electrification_march2021
https://www.nxtbook.com/nxtbooks/pes/electrification_december2020
https://www.nxtbook.com/nxtbooks/pes/electrification_september2020
https://www.nxtbook.com/nxtbooks/pes/electrification_june2020
https://www.nxtbook.com/nxtbooks/pes/electrification_march2020
https://www.nxtbook.com/nxtbooks/pes/electrification_december2019
https://www.nxtbook.com/nxtbooks/pes/electrification_september2019
https://www.nxtbook.com/nxtbooks/pes/electrification_june2019
https://www.nxtbook.com/nxtbooks/pes/electrification_march2019
https://www.nxtbook.com/nxtbooks/pes/electrification_december2018
https://www.nxtbook.com/nxtbooks/pes/electrification_september2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2018
https://www.nxtbook.com/nxtbooks/pes/electrification_december2017
https://www.nxtbook.com/nxtbooks/pes/electrification_september2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2018
https://www.nxtbook.com/nxtbooks/pes/electrification_june2017
https://www.nxtbook.com/nxtbooks/pes/electrification_march2017
https://www.nxtbook.com/nxtbooks/pes/electrification_june2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2016
https://www.nxtbook.com/nxtbooks/pes/electrification_september2016
https://www.nxtbook.com/nxtbooks/pes/electrification_december2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2016
https://www.nxtbook.com/nxtbooks/pes/electrification_march2015
https://www.nxtbook.com/nxtbooks/pes/electrification_june2015
https://www.nxtbook.com/nxtbooks/pes/electrification_september2015
https://www.nxtbook.com/nxtbooks/pes/electrification_march2014
https://www.nxtbook.com/nxtbooks/pes/electrification_june2014
https://www.nxtbook.com/nxtbooks/pes/electrification_september2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2014
https://www.nxtbook.com/nxtbooks/pes/electrification_december2013
https://www.nxtbook.com/nxtbooks/pes/electrification_september2013
https://www.nxtbookmedia.com